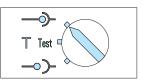
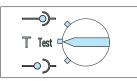
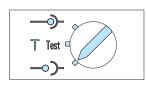

NA8 Air Circuit Breaker


Structural Features of Circuit Breaker


Identification of Circuit Breaker Panel

- (1) Trademark
- (2) Secondary wiring terminal
- 3 Breaking button
- (4) Energy- storage handle
- (5) Making button
- 6 Name plate
- (7) Energy-storage/release indicator
- 8 Breaking/Making indicator


"Connected" position, main circuit and secondary circuit are both connected

T Test: "Test" position, main circuit disconnected and isolated with safety barrier, only secondary circuit is connected

- (10) Three-position locking device
- (11) Drawer padlock
- (12) Racking- handle entry
- 13) Position indicator
- (14) Rotary handle storage hole
- (15) Intelligent controller
- (16) Fault-breaking indicator reset button

position, main circuit and secondary circuit are both disconnected

Button does not pop up, and handle is free to rotate;
Button pops up, and handle can not be rotated until button is reset manually.

Circuit Breaker

- Frame size (A): 1600 (In preparation...) , 2500, 4000, 7500
- Two kinds of breaking capacity: N, H (for 7500)
- Rated voltage Ue (VAC): 380/400/415, 690,
- Number of poles: 3 or 4 poles
- Mounting mode: draw-out type or fixed type
- Mode of connection: horizontal connection, vertical connection, mixed connection

Operating Conditions and Environmental Suitability

 NA8 products can operate normally at the following temperature.

Electric and mechanical characteristic applicable for ambient temperature -5°C~+40°C (certified), and also peripheral ambient temperature -45°C~+70°C (M type), -20°C~+70°C (H type).

• For specific derating factor, see P23.

Storage conditions: Applicable for -45°C~+70°C.

 NA8 may resist against the following electromagnetic interference:

EMI-generated overvoltage;

Overvoltage caused by environmental disturbance or distribution system;

Radio wave (radio, interphone, radar, etc.)

Static discharge of terminal users

 NA8 circuit breakers have successfully accredited through the EMC test specified in the following standards:

IEC/ EN 60947-2

The above tests may ensure:

no false tripping fault, tripping time not interrupted.

Protection grade

Front IP20, other sides IP00

Intelligent Controller

• M type (basic type)

Basic functions: current measurement and display, protection function (L, S, I&G)

• H type (communication type)

Including all protection functions of M Type

LCD display

Communication function

• H type +optional functions

Including all protection and measurement functions of H type

(optional) voltage, power and other measurement functions

(optional) advanced protection function

(optional) harmonic measurement and analysis

(optional) multiple auxiliary functions

Connection

Rear connection

Horizontal connection, vertical connection, mixed connection are optional, and horizontal connection is of standard configuration

Optional accessories

Interphase insulating barrier, NA8-1600 expansion busbar

Lock

- Key lock
- Drawer position padlock (to lock the circuit breaker at the disconnected position)
- Drawer shutters padlock
- Breaking/Making button padlock
- Door interlock

Indication Contacts

Standard contacts

Breaking/Making indication contact Fault tripping indication contact Spring energy storage indication contact

Options

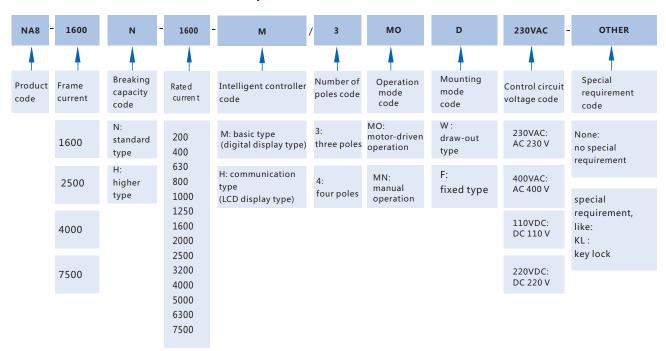
Drawer seat position indication contact The ready to close contact may be added (There is no such function for 1600A frame).

Remote Operation

Standard accessories

Motor-driven mechanism: MO Closing electromagnet: CC

Shunt release: ST

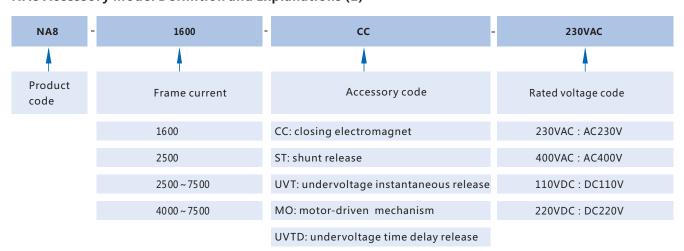

Options

Undervoltage time delay release: UVTD
Undervoltage instantaneous release: UVT

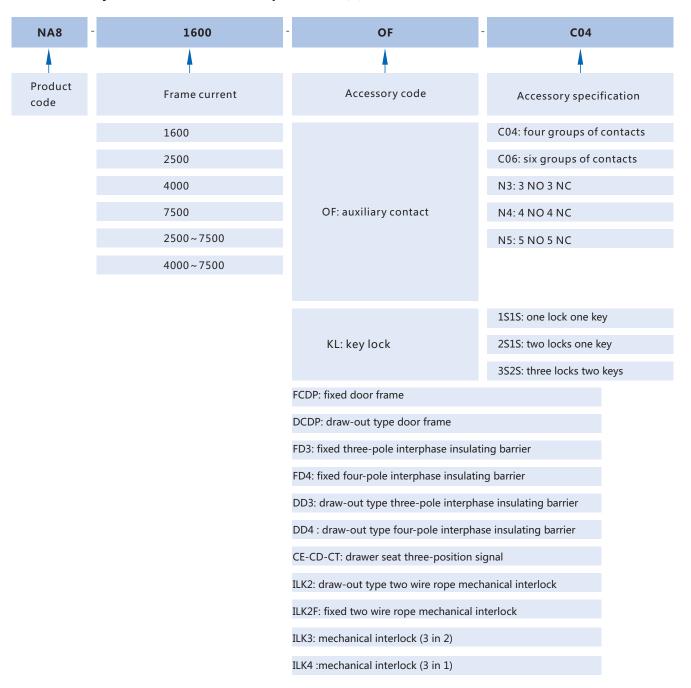
NA8 Air Circuit Breaker

Product model	Rated Breaking current capacity	200	400	630	800	1000	1250	1600	2000	2500	3200	4000	5000	6300	7500
NA8-1600 (In preparation)	N	•	•	•	•	•	•	•							
NA8-2500	Н			•	•	•	•	•	•	•					
NA8-4000	Н							•	•		•	•			
NA8-7500	N													•	
INA6-7500	Н											-		-	

NA8 Product Model Definition and Explanations



Notes: 1) "N "needs not be indicated for type N breaking capacity of NA8-7500, and may be omitted; if type H breaking capacity is selected, "H" needs to be indicated."


2) Manual operation: excluding motor-driven mechanism and closing electromagnet, shunt release, motor-drivenoperation: including all remote operation standard accessories.

3) Code instance: NA8-2500H-2000M/3MO-D AC230V: 2500A frame H type breaking capacity, rated current 2000A, M type ntelligent controller, 3poles, motor-driven operation, draw-out type, control voltage AC230V.

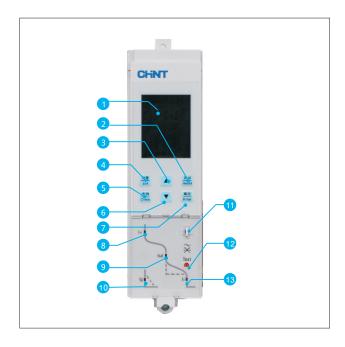
NA8 Accessory Model Definition and Explanations (1)

NA8 Accessory Model Definition and Explanations (2)

Note	

Main Technical Parameters of Circuit Breaker

Characteristics


Number of poles	3/4	
Rated operational voltage Ue (V)	380/400/415、690	
Rated insulation voltage Ui (V)	1000	
Rated impulse withstand voltage Uimp (kV)	12	
Rated frequency (Hz)	50/60	
Flashover distance (mm)	0	
Suitability for isolation	IEC/EN 60947-2	Applicable
Pollution grade	IEC 60664-1	N:3

Frame size						
Rated current (A)						
Rated current of the N pole (A)						
Type of the circuit breaker						
Rated ultimate short-circuit breaking capacity (kA rms) VAC 50/0	60Hz Icu		380/400/415V、690V			
Rated service short-circuit breaking capacity (kA rms) VAC 50/60	OHz Ics		380/400/415V、690V			
Utilization category						
Rated short- time withstand current (kA rms) VAC 50/60Hz	Icw	1s	380/400/415V、690V			
	Icw	3s	380/400/415V、690V			
Rated short-circuit making capacity (kA peak) VAC 50/60Hz	Icm		380/400/415V、690V			
Making current tripping protection function (MCR kA rms)			'			
Breaking time (ms)						
Closing time (ms)						
Mounting, connection and service life						
Service life C/O cycle	Mechanic	al	No maintenance			
	Electrical		No maintenance	No maintenance		
Connection	Horizonta	l. Ve	ertical、Mixed			
	Fixed type		3P			
Size (H×W×D)			4P			
5120 (11.14.15)	Draw-out	type	3P			
	Diaw out	r, pc	4P			

NA8-1600 (In preparation)							NA8-2500						
200	400	630	800	1000	1250	1600	630	800	1000	1250	1600	2000	2500
200	400	630	800	1000	1250	1600	630	800	1000	1250	1600	2000	2500
N(400V)		N(69	00V)					H (415V)		Н (69	0V)		
55		30						85			65		
42		25						85			65		
В								В					
42		25						85			65		
								50			50		
121		63						176			121		
10							16						
20~30							20~30						
30~40							30~40						
20000							20000						
8000		3000					8000				4000		
							•						
320×254	×250						367×37	0×357					
320×324	×250						367×46	1×357					
351×282	2×350						431×37	5×478					
351×352	2×350						431×47	0×478					

NA8-4000	0				NA8-7500							
1600	2000	2500	3200	4000	4000	5000		6300	7500			
1600	2000	2500	3200	4000	4000	5000		6300	3750			
H(415V)	H(690V)				N(440V)	N(690V)	H(440V)) H(690V)	N(440V)	N(690V)	H(440V)	H(690V)
100	85				135	100	150	100	135	100	150	100
100	85				135	100	135	100	135	100	150	100
В					В							
100	85				135	100	135	100	135	100	135	100
75	75				100	100	100	100	100	100	100	100
220	187				297	220	330	220	297	220	330	220
26					26							
20~30					20~30							
30~40					30~45							
10000					1000							
6000	3000	500			1500(440v)	1000(69	0v)					
					•							
402×422×	341											
402×537×	341											
431.5×435	5×456				472×786×4	164						
431.5×550	0×456				472×1016>	×464						

Function Overview of Intelligent Controller

- 1 Display window: display the current value, setting parameter, fault current, tripping time, etc.
- 2 Return button: exit from current menu and enter the upperlevel menu, or cancel current setting parameter value.
- 3 Up button: move up the check box submenu at the current menu, or realize "+" parameter setting in parameter setting.
- 4 Set button: switch to the default setting menu.
- 5 Check button: switch to the default query menu.
- 6 Down button: move down the check box submenu at the current menu, or realize "-" parameter setting in parameter setting.
- 7 Enter button: enter the next-level menu of current selected box, or save current parameter setting.
- 8 Ir indicator for overload long-time-delay tripping.
- 9 Isd indicator for short circuit short-time-delay tripping.
- 10 Ig indicator for earth fault tripping.
- 11 Cover lock hole
- 12 Button for tripping test
- 13 Ii indicator for short-circuit instantaneous tripping.

M Type intelligent controller (basic type)

Protection

All protective threshold values and time delays are set using buttons.

Overload protection

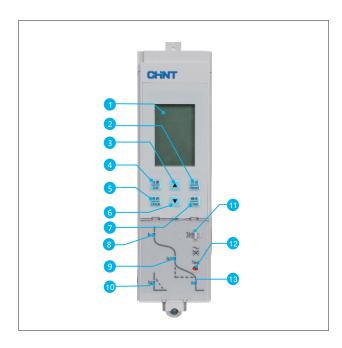
True RMS long time delay protection.

Thermal memory: heat accumulation before and after tripping.

Short circuit protection

Short time delay (RMS) and instantaneous protection

- 4 definite time-delay options in terms of time delay
- Earth fault protection
 - 4 definite time-delay options in terms of time delay
- Test function


Simulate 6I_R test current for tripping test.

• Tripping recording function

Tripping reason display function

Ammeter

M Type intelligent controller measures the current true effective value (RMS) from 40% to 150% with an accuracy of 2%.

- 1 Display window: display the current value, setting parameter, fault current, tripping time, etc.
- 2 Return button: exit from current menu and enter the upper3.8-level menu, or cancel current setting parameter value.
- 3 Up button: move up the check box submenu at the current menu, or realize "+" parameter setting in parameter setting.
- 4 Set button: switch to the default setting menu.
- 5 Check button: switch to the default query menu
- 6 Down button: move down the check box submenu at the current menu, or realize "-" parameter setting in parameter setting.
- 7 Enter button: enter the next-level menu of current selected box, or save current parameter setting.
- 8 Ir indicator for overload long-time-delay tripping.
- 9 Isd indicator for short circuit short-time-delay tripping .
- 10 Ig indicator for earth fault tripping.
- 11 Cover lock hole
- 12 Test button for tripping test
- 13 Ii indicator for overload long-time-delay tripping.

H Type Intelligent Controller (communication type)

Protection

All protective threshold values and time delays are set using buttons.

- Contain all protection functions of M type control unit.
- Communication function

Modbus - RTU communication protocol

- Leakage protection function (optional)
 Special external transformer is equipped.
- Advanced protection function (optional)

Voltage unbalance protection

Overvoltage and undervoltage protection

Overfrequency and under-frequency protection

Phase sequence protection

Reverse power protection function

Demand value protection function

Expanded functions

Intelligent controller self-diagnostics

Operation times/fault tripping/alarm/ deflection recording

function: providing the record of the latest 10times.

Main contact abrasion display function: evaluate the contact abrasion degree according to the mechanical life, electric life and breaking capacity of different frames.

Internal clock function.

Button Trip-test function.

• Electric energy meter (optional)

Voltage measurement

Frequency measurement

Demand value measurement

Power (active power, reactive power, apparent power) measurement

Electric energy (active power, reactive power, apparent power)

measurement

Power factor measurement

- Load monitoring function (optional)
- Zone selectivity interlock (optional)
- Input/output function (optional)

3DO, 4DO or 2DI, 2DO

DI signal: AC230 V (standard, other optional); DC110V;

 $\,$ DO requires the power module (24VDC output) and relay module.

Harmonic analysis function (optional)

Measuring the fundamental wave current, fundamental wave line voltage, fundamental wave phase voltage, fundamental wave power and each 3-31 odd harmonic current ratio (HRIh), harmonic voltage ratio(HRUh), total harmonic current distortion [THDi, thdi], total harmonic voltage distortion [THDu, thdu].

Harmonic wave ratio (HR):

the ratio of the RMS value of the hth of harmonic component contained in the cyclic AC quantity to the RMS value of fundamental wave component (in percentage).

Protective Characteristics of Intelligent Controller

Protective characteristics of intelligent controller consist of inverse time-delay and definite time-delay.

When the fault current exceeds the inverse time-delay

setting, the controller provides time delay protection according to the definite time-delay.

The inverse time-delay current conforms to the characteristic curve I2t.

Overload long-time-delay protection characteristics

Overload long-time-delay protection acting by threshold value.

Setting parameter	Setting ran	Setting range				Error	Error				
Long time-delay setting current Ir	(0.4-1 .0) In	+OFF				±15%					
Long time-delay setting step size	1A (1600-25	500 Frame size	e); 2A(4000-	7500 Frame s	ize)						
Long time-delay setting time tr	(1-2-4-8 -1	(1-2- 4-8 -12-16-20 -24 -30)s									
Anti-time-limit characteristic curve	$t = (\frac{6}{N})^2 \times tr$	$t = (\frac{6}{N})^2 \times tr$									
Fault current	Action time										
I< 0.85Ii	No action										
I> 1.l5Ii	Action										
1.5lr	16	32	64	128	192		256	320	384	480	
2.0lr	9	18	36	72	108	3	144	180	216	270	
6.0Ir	1	2	4	8	12		16	20	24	30	

Notes:N --- the multiple of fault current divided by set current I/Ir

t --- fault operating delay time

t_R --- long time delay set value

Operating time permissible error±15%

Conventional factory setting: overload long time delay current 1.0In;

Conventional factory setting: overload 6Ir; operating time 2s

Example: Given that overload long time delay current 1.0In, delay time 2s (at 6Ir), now line current I=1.8In, actual fault operating delay time t may be calculated:

N =1.8In/1.0In=1.8

 $t = (6/1.8)^2 \times 2 = 22.2s$

Short circuit short-time-delay protection characteristics

Short circuit short time delay protection acting by threshold value.

Setting parameter	Setting range		Error			
Short time-delay setting current Isd	(1.5-10) In+OFF		±10%			
Short time-delay setting step size	1A (1600-2500 Fran	ne size) ; 2A(4000-7500 Frame size)				
Short time-delay setting time tsd	Definite-time-limit Anti-time-limit:0.1	:: 0.11、0.21、0.31、0.41; 、0.2、0.3、0.4	±15% or inherent 40ms (take the maximum)			
Fault current	Action time					
I< 0.9Isd	No action					
I> 1.l5Isd	Time-delay action					
Isd < I≤10I	Anti-time-limit	Action characteristicsI ² t=(10I,) ² tsd				
	7	Setting times 0.1, 0.2, 0.3, 0.4				
		Setting times 0.11、0.21、0.31、0.41				
1≥1.1Isd	Definite-time-limit	Min.s 0.06、0.16、0.255、0.34				
		Max.s 0.14、0.24、0.345、0.46				
	Return time	0.05、0.14、0.25、0.33				

Notes: Isd --- short time delay current set value

I --- fault current

Ir --- long time delay set value

t --- fault operating delay time

tsd --- short time delay inverse time-delay set value

Operating time permissible error $\pm 15\%$

Conventional factory setting: short time delay current 8Ir

Conventional factory setting: short time delay operating time 0.4s

Short circuit instantaneous protection characteristic

Short circuit instantaneous protection acting by threshold value.

Setting parameter	Setting rang	e		
Instantaneous setting current Ii	(2~15) In+OFF			
Short time-delay setting step size	1A (1600-2500 Frame size) ; 2A(4000-7500 Frame size)			
Operating characteristics	I < 0.85Ii	No action		
	I > 1.15Ii	Action		
	≤100ms	Action time		

Earth Fault Protection Characteristic

Earth fault protection operating threshold

<0.9Ig: no action;

>1.1Ig: action;

NA8 -1600\2500: 0.2In~1.0In + OFF (MAX:1200A)

NA8-4000\7500: 500 A~1200 A + OFF

Definite time-delay	Setting time (s)	0.1	0.2	0.3	0.4
	Min (s)	0.06	0.16	0.255	0.34
	Max (s)	0.14	0.24	0.345	0.46
	Return time	0.05	0.14	0.25	0.33
Inverse time-delay	$t = \frac{(I_9)^2}{I^2} \times tg$				

Notes: I_g — earth protection setting, NA8-1600\2500 default factory setting I_g =0.5In , 4000\7500 default factory setting I_g =800A I --- fault current

T --- fault operating delay time

tg --- earth inverse time-delay set value

Inverse time-delay operating time permissible error $\pm 15\%$

Conventional factory setting: OFF

Controller Minimum Factory Display Current

Frame	Rated current	Minimum display value
1600	400~1600	80
2500	630~2500	80
≥4000	≥1600	160

Measuring Accuracy of Intelligent Controller

Current measurement				
Measuring range	Ib, Ic and I $_{\scriptscriptstyle N}$ not more than 15In (circuit breaker rated current)			
	Below 0.1In, measurement is inaccurate.			
	0.1In~0.4In, the accuracy will linearly change from 5% to 2%.			
Measuring accuracy	0.4In~1.5In, the accuracy is 2%.			
	> 1.5In, the accuracy will linearly change from 2% to 15%.			
	Measuring accuracy of earth current is 10%.			

Voltage measurement	
	Line voltage: 0~600 V
Measuring range	Phase voltage: 0~300 V
Measuring accuracy	Error: ±1%

Frequency	
Measuring range	40Hz~70Hz
Error	Error: ±0.1H z

Power		
Measurement mode	Effective value	
	3P: total active power, total reactive power, total apparent power	
Measuring content	4P: split phase active power, split phase reactive power, split phase apparent power, total active power, total	
	reactive power, total apparent power	
	Active power: -32768kW~+32767kW	
Measuring range	Reactive power: -32768Kvar~+32767Kvar	
	Apparent power: 0KVA~65535kVA	
	Error: ±2.5%	

Power factor	
	3P: total power factor
Measuring content	4P: split phase power factor
Measuring range	-1.00~+1.00

Electric energy	
	Input reactive electric energy (EQin), output reactive electric energy (EQout)
Measuring content	Input active electric energy (EPin), output active electric energy (EPout)
	Total active electric energy (EPtotal), total reactive electric energy (EQtotal), total apparent electric energy (EStotal)
	Active electric energy: -32768kWh~+32767kWh
Measuring range	Reactive electric energy: -32768Kvarh~+32767Kvarh
	Apparent electric energy: 0~65535kVAh
Measuring accuracy	±2.5%

Harmonic measurement	
From damage the Lorentz management and	Current: Ia, Ib, Ic
Fundamental wave measurement	Voltage: Uab, Ubc, Uca
Total harmonic distortion	THD: total distortion ratio of harmonic wave in relative to fundamental wave
THD and Thd	Thd: total distortion ratio of harmonic wave in relative to effective value
Harmonic amplitude spectrum	The controller may display FFT amplitude of 3~31 odd harmonic in percentage "%".
Control unit measuring accuracy	±2%

Tripping Characteristic Curve of Intelligent Controller

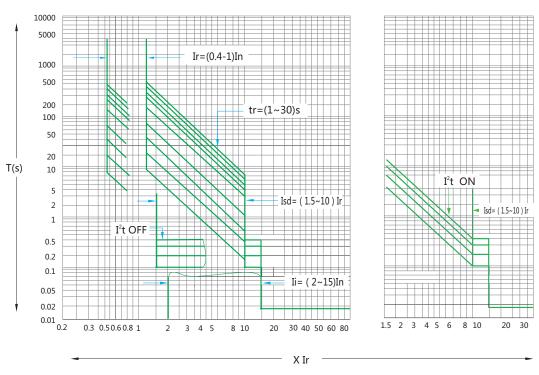


Fig.1 Overcurrent protection curves

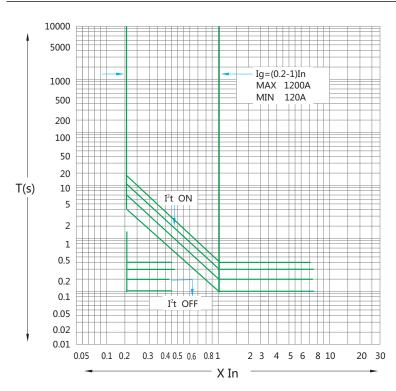
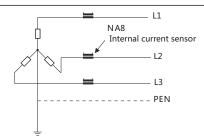
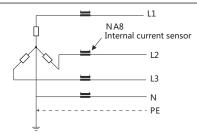
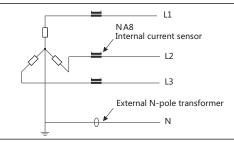



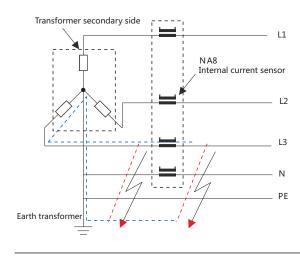
Fig.2 Asymmetrical earth fault protection curves


Explanations on Earth Fault Protection

Single Phase Earth Fault Protection

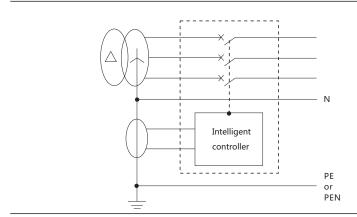

• The three-pole circuit breaker realizes earth protection through testing whether the three-phase current vector sum is zero or not via internal three current transformers.

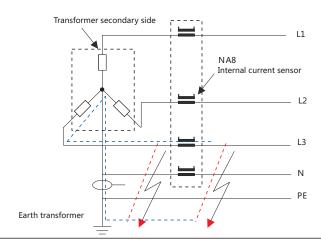
• The four-pole circuit breaker realizes earth protection through testing whether the three-phase current and N phase current vector sum is zero or not via internal four current transformers.


• The 3P+N system realizes earth protection through the vector sum calculation via the three-pole circuit breaker and external N-pole transformer.

Notes: ① The external N-phase current transformer is special transformer configured by the company, and the default lead wire is 2m long.

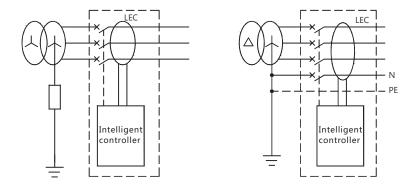
- ② At 3PT, the earth protection can be only used for balanced load; for unbalanced load, this function should be closed or the set value is set above the permissible unbalanced current; otherwise, it might cause the operation of intelligent controller.
- (3) At (3P+N) T, maximum distance between transformer and circuit breaker cannot exceed 5m; when the transformer lead wire exceeds 2m long, it should be particularly indicated upon placing an order.


As show below, a load side fault of NA8 circuit breaker: The fault current only flows through one phase. If the three-phase current vector sum detected by 4 current sensors is higher than the set threshold, the intelligent control unit will activate the differential earth protection function. Such earth protection realizes the load side earth fault protection.


Earth Current Type Earth Protection

The earth transformer is used at the transformer star center to fulfill earth protection.

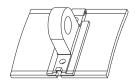
On condition of the circuit breaker protection of medium voltage/low voltage transformer, an earth transformer can be equipped at the transformer star connection center (the circuit breaker should be equipped with the H type controller, and the earth current protection transformer should be selected), and this earth transformer may measure the earth fault current at the power supply side and load side of NA8 circuit breaker, as shown below.


As shown below, through installing the external earth transformer, the earth fault at the power supply side of circuit breaker can be checked, and the earth fault at the load side of NA8 circuit breaker can also be detected.

Residual Leakage Protection

It is especially suitable for places having high-sensitivity requirement for the residual current protection to prevent man-made indirect contact. For NA8 circuit breaker, the H type controller should be selected, and the leakage protection function and leakage transformer (LEC) accessory should be added so as to realize leakage protection.

Leakage current I△N	[A]0.5-1-2-3-5-7-10-20-30
Tripping time 4 t	[s]0.06-0.17-0.25-0.33-0.42-0.58-0.75-0.83



The NA8 circuit breaker realizes the residual current protection function and needs to meet the following requirements:

- 1. Select the H-type controller;
- 2. Adding the leakage protection function of the controller;
- 3. Adding leakage current transformer (LEC) accessories;
- 4. The outgoing terminal of the circuit breaker is connected vertically;
- 5. It is available when the rated current of the circuit breaker is ≤3200A,

Accessory: Lock

Key Lock KL

There are 3 kinds of key lock (The later two kinds are used in the distribution system of two incoming cabinets and one connection cabinet):

one lock one key (1S1S)

two locks one key (2S1S)

three locks two keys (3S2S)

Drawer shutters Padlock

The padlock should be self prepared by the user.

If the padlock is selected, when the circuit breaker body is at the disconnected or test position, it should ensure the body terminal is not connected with external live circuit.

Drawer Position Padlock

The padlock should be self prepared by the user.

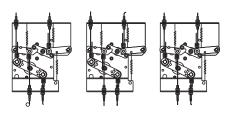
After the drawer seat and body are locked at the disconnected using the padlock, the drawer seat rocker couldn't be inserted into the drawer seat rocking-handle hole, so the draw-out type circuit breaker body position cannot be changed.

Door Interlock

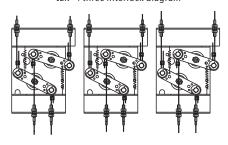
Circuit breaker condition door interlock

When the circuit breaker is closed, it is forbidden to open the switchgear door; when the circuit breaker is opened, it is allowed to open the switchgear door.

Circuit breaker position door interlock


When the circuit breaker is at the connection and test position, it is forbidden to open the switchgear door; when the circuit breaker is at the detachment position, it is allowed to open the switchgear door.

Pushbutton Lock PL


Pushbutton lock: used to lock up the mechanical button opening and closing the circuit breaker, and the padlock is used. After locking, manual opening and closing operation couldn't be done. (the padlock should be selfprepared by the user).

ILK -3 three interlock diagram

ILK -4 three interlock diagram

Mechanical Interlock IKL2 (Wire rope two interlock):

It may realize the interlocking of two horizontal or vertically installed three- or four-pole circuit breakers.

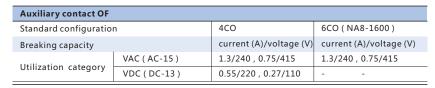
Circuit diagram	Possible operatio	mode of n
<u> </u>	1QF	2QF
YY	0	0
1QF 2QF	0	1
X - X	1	0

Notes: a. When it needs to bend the wire rope, the transition arc at the bend should be higher than R120mm to ensure it can move flexibly.

b. Check the wire rope and ensure enough lubricating oil in it to ensure its flexible movement.

Mechanical Interlock ILK-3/4 (wire rope three interlock)

It may realize the interlocking of three flat or vertically installed three- or four-pole circuit breakers


ILK-3 three interlock Circuit diagram	Possible mode of operation	ILK- 4 three interlock Circuit diagram	Possible mode of operation
	1QF 2QF 3QF 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0		1QF 2QF 3QF 0 0 0 0 0 1 0 1 0 1 0 0

Notes: a. When it needs to bend the wire rope, the transition arc at the bend should be higher than R120mm to ensure it can move flexibly.

 $\ensuremath{\mathbf{b}}$. Check the wire rope and ensure enough lubricating oil in it to ensure its flexible movement.

Accessory: Indication Contact

Drawer seat three-position indication contact CD - CE - CT		
Standard configuration 1CO/3		1CO/3
Breaking capacity		current (A)/voltage (V)
Utilization category	VAC (AC-15)	1.3/240 , 0.75/415
	VDC (DC-13)	0.55/220 , 0.27/110

Tripping alarm contact		
Standard configuration 1CO		1CO
Breaking capacity		current (A)/voltage (V)
Utilization category	VAC (AC-15)	1.3/240 , 0.75/415
Offitzation category	VDC (DC-13)	0.55/220 , 0.27/110

Spring energy storage indication contact		
Standard configuration		1NO
Breaking capacity		current (A)/voltage (V)
Utilization category	VAC (AC-15)	1.3/240 , 0.75/415
	VDC (DC-13)	0.55/220 , 0.27/110

Notes: 1) CO is the changeover contact, 1NO 1NC is matched with a common terminal.

2) NO is normally open contact, NC is normally closed contact.

1600 frame MO

2500、4000~7500 frame MO

1600 frame CC&ST

2500、4000~7500 frame CC&ST

Motor-driven mechanism (MO)

It has the function of motor energy storage and automatic re-energy storage after closing of circuit breaker to ensure the circuit breaker can be closed immediately after opening. Where there is no auxiliary power supply, the energy storage handle is used as standby.

Characteristic		
D	VAC 50/60Hz	220/230/240 , 380/400/415
Power supply	VDC	110 , 220
Operating threshold		0.85-1.1Us
Frame: power consum	ption (VA or W)	1600:75W; 2500:85W; 4000~7500:180W
Motor over-current ti	me	≤1min
Energy storage time		≤7s
Operating frequency		≤2times/min

Electric remote operation coil (CC and ST)

Closing electromagnet (CC)

If energy storage of the mechanism is done, CC may fulfill remote closing after being energized.

Characteristic	СС			
	VAC 50/60Hz	220/230/240		
Power supply	VAC 30/00H2	380/400/415		
	VDC	220,110		
Operating voltage		0.85-1.1Us		
Frame: power consumption (VA or W)	AC	400VA		
Frame. power consumption (VA or W)	DC	1600 : 380W ; 2500、4000~7500 : 130W		
Circuit breaker response time		30ms-45ms		

Shunt release (ST)

After being energized, ST will open the circuit breaker instantaneously.

Characteristic	ST			
	VAC 50/60Hz	220/230/240		
Power supply	VAC 30/00H2	380/400/415		
	VDC	220,110		
Operating voltage		0.85-1.1Us		
Frame: power consumption (VA or W)	AC	400VA		
Traine. power consumption (vx or w)	DC	1600 : 380W ; 2500、4000~7500 : 130W		
Circuit breaker response time		25ms-35ms		

1600 frame UVT

2500、4000~7500 frame UVT

Undervoltage release (UVT)

If the supply voltage reduced to a value between 35% and 70% of rated voltage, this tripping coil leads to the instantaneous opening of circuit breaker. If the UVT tripping coil is not energized, the circuit breaker cannot be closed, manually (closing button) or electrically (closed electromagnet). Only when the supply voltage of UVT tripping coil reaches 85% of rated voltage, the circuit breaker can be closed.

Characteristic							
	VAC 50/60Hz		220/230/240 , 380/400/415				
Power supply	VDC		-				
Operating threshold	Opening	0.35-0.7Ue	0.35-0.7Ue				
Operating timeshold	Closing	0.85Ue	0.85-1.1Ue				
Frame: power consum	ption (W)	1600 : 220W/15W ; 2500、4000~7500 : 220W/13W					

Note: attracting/holding.

Undervoltage time delay release (UVTD)

To prevent the false tripping circuit breaker resulting from short time voltage drop, it requires UVT operating time delay. A time delay unit is added besides UVT to realize this function.

Characteristic							
Power supply	VAC 50/60Hz						
Operating threshold	Opening	0.35-0.7Ue					
Operating timeshold	Closing	0.85Ue					
Frame: power consumption (VA)	1600 : 20VA ; 2	5000、4000~7500:48VA					
Adjustable time	1s~5s, the time	delay can be selected and adjustable.					

Note: Only NA8 - 1600 uses the external undervoltage time delay module, and 2500、4000~7500 product undervoltage time delay release has built-in undervoltage time delay unit.

Capacticy Derating and Power Loss

NA8-1600 (In preparation...)

Ambient temperature	200A		400A		630A		800A		1000A		1250A		1600A	
Connection mode	Horizontal	Vertical												
40°	-	-	-	-	-	-	-	-	-	-	-	-	-	-
45°	-	-	-	-	-	-	-	-	-	-	-	-	1550	-
50°	-	-	-	-	-	-	-	-	-	-	-	-	1500	1550
55°	-	-	-	-	-	-	-	-	950	950	1150	1200	1450	1500
60°	-	-	-	-	550	580	700	700	900	900	1050	1100	1350	1450

NA8-2500

Ambient temperature	630A		800A		1000A		1250A		1600A		2000A		2500A	
Connection mode	Horizontal	Vertical												
40°	-	-	-	-	-	-	-	-	-	-	-	-	-	-
45°	-	-	-	-	-	-	-	-	-	-	1900	-	2400	2400
50°	-	-	-	-	-	-	-	-	1500	1550	1850	1900	2300	2300
55°	-	-	-	-	-	-	-	-	1400	1450	1800	1800	2200	2200
60°	-	-	-	-	-	-	-	-	1300	1350	1700	1700	2100	2100

NA8-4000

Ambient temperature	1600A		2000A		2500A		3200A		4000A	
Connection mode	Horizontal	Vertical								
40°	-	-	-	-	-	-	-	-		-
45°	-	-	-	-	-	-	-	-	3800	3850
50°	-	-	-	-	-	-	3100	-	3600	3650
55°	-	-	-	-	2450	-	3000	3050	3400	3450
60°	-	-	1900	1950	2350	2400	2900	2950	3200	3250

NA8-7500

Ambient temperature	4000A		5000A		6300A		7500A	
Connection mode	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical
40°	-	-	-	-	/	-	/	-
45°	-	-	-	-	/	6100	/	7000
50°	-	-	4700	4800	/	6000	/	6550
55°	3900	3900	4600	4650	/	5500	/	6050
60°	3800	3800	4400	4500	/	5200	/	5650

Note: "-" represents no derating; "/" means no horizontal connection.

Altitude Capacity Derating Factor

Voltage performance corrections under different altitudes

Altitude (m)		2000	3000	4000	5000
Rated impusle withstand voltage (kV)	Uimp	12	10	8.5	7.5
Average insulation grade (V)	Ui	1000	800	700	600
Power frequency withstand voltage (V)		2200	1955	1760	1600
Maximum operational voltage (V)	Ue	690	580	500	400

Current performance corrections under different altitudes

Altitude (m)	Rated operating current (Ie)
2000	1.0Ie
2500	0.93Ie
3000	0.88Ie
3500	0.83Ie
4000	0.78Ie
4500	0.73Ie
5000	The factory must be contacted for confirmation

Note: If the ambient temperature is lower than 40 °C, Ie = In; if the ambient temperature is higher than 40 °C, derating use must be done in strict accordance with the $requirement of operation \ manual; in such \ case, Ie \pm In \ , Ie \ and \ In \ can \ be \ looked \ up \ \ according \ to \ the \ temperature \ derating \ table.$

Power loss

Power loss is the power consumption per pole measured at In, $50/60\ Hz$.

Frame	Rated current (A)	Power loss of draw-out type (W)	Power loss of fixed type (W)
	200	115	45
	400	140	80
	630	161	100
16004 (In managed in m	800	215	110
1600A (In preparation)	1000	230	120
	1250	250	130
	1600	460	220
	630	58.6	26.4
	800	73.7	36.6
25004	1000	172	78
2500A	1250	268	122
	1600	440	200
	2000	530	262
	2500	600	312
	2000	470	250
4000A	2500	550	280
4000A	3200	670	420
	4000	1047	656
	4000	550	-
7500A	5000	590	-
	6300	950	-
	7500	1500	-

Dimension Of Busbar

Bolt Configuration and Mounting Torque

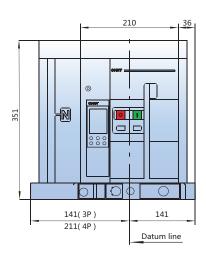
Bolt type	Application	Preferred tightening torque
M3	Fasten the secondary connecting conductor	(0.5~0.7) N·m
M8 (with flat washer only)	Fasten the product on the switchgear (1600A frame)	(18~25) N·m
M10 (with flat washer only)	Fasten the product on the switchgear (2500A and above frame)	(25~40) N·m
M10	Fasten the busbar	(36~52) N·m

Connection Busbar Specification Reference under Different Temperatures

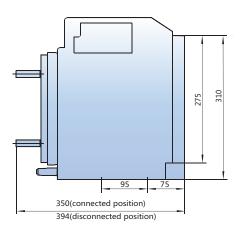
Permissible maximum busbar temperature: 100°C

The busbar material is bare copper, and the unit of width and thickness is both mm.

	Ambient temperature (-5~40) ℃			·40) ℃	Ambient temperature 50°C			Ambient temperature 60°C					
Frame	Rated	Recommended busbar specification			Reco	Recommended busbar specification			Recommended busbar specification				
current	current (A)	Width	Thickness	Number of panels	Specification	Width	Thickness	Number of panels	Specification	Width	Thickness	Number of panels	Specification
	200	30	5	1	30*5*1	30	5	1	30*5*1	40	5	1	40*5*1
	400	30	5	2	30*5*2	30	5	2	30*5*2	30	10	1	30*10*1
	630	40	5	2	40*5*2	40	5	2	40*5*2	50	5	2	50*5*2
1600A	800	50	5	2	50*5*2	50	5	2	50*5*2	50	6	2	50*6*2
(In preparation)	1000	50	5	3	50*5*3	50	5	3	50*5*3	50	6	3	50*6*3
(in preparation)	1250	60	8	2	60*8*2	60	8	2	60*8*2	60	10	2	60*10*2
	1600	60	10	2	60*10*2	60	10	2	60*10*2	60	10	3	60*10*3
	630	40	5	2	40*5*2	50	5	2	50*5*2	50	5	2	50*5*2
	800	50	5	2	50*5*2	50	5	2	50*5*2	60	5	2	60*5*2
	1000	50	5	3	50*5*3	50	5	3	50*5*3	60	5	3	60*5*3
2500A	1250	60	8	2	60*8*2	60	8	2	60*8*2	60	8	3	60*8*3
	1600	60	10	2	60*10*2	60	10	2	60*10*2	60	10	3	60*10*3
	2000	100	5	3	100*5*3	100	5	3	100*5*3	100	5	4	100*5*4
	2500	100	10	2	100*10*2	100	10	2	100*10*2	80	10	3	80*10*3
	2000	80	8	3	80*8*3	80	8	3	80*8*3	80	10	3	80*10*3
	2500	80	6	4	80*6*4	80	6	4	80*6*4	80	8	4	80*8*4
4000A	3200	100	10	4	100*10*4	100	10	4	100*10*4	100	10	4	100*10*4
	4000	100	10	5	100*10*5	100	10	5	100*10*5	120	10	5	120*10*5
	4000	100	10	5	100*10*5	100	10	5	100*10*5	100	10	6	100*10*5
7500A	5000	100	10	7	100*10*7	100	10	7	100*10*7	120	10	7	120*10*7
/500A	6300	120	10	7	120*10*7	120	10	7	120*10*7	120	10	8	120*10*8
	7500	120	10	9	120*10*9	120	10	9	120*10*9	120	10	10	120*10*10

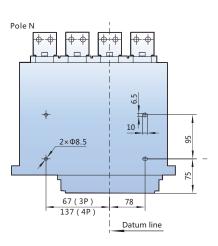

Notes: a. When the copper busbar selected by the user is not matched with the circuit breaker connection terminal, it needs to design and process the extension busbar for connection. The extension busbar will be designed by the user; its section area cannot be less than the above requirement, and the clearance between extension busbars cannot be less than that between the circuit breaker connection terminals.

- b. After installing the above recommended busbar, it shall ensure the electric clearance between adjacent phases of the circuit breakers is not less than 18mm.
- c. For electric components using thyristor for three-phase rectification and high-frequency inversion in the load devices, like high-frequency induction heating electric furnace (intermediate frequency furnace steel facility), solid state high frequency welder (such as submerged arc welder), vacuum heating melting facility (like single crystal growing furnace), upon selecting the circuit breaker, it should take into account not only the impact of ambient temperature and altitude, but also the impact of higher harmonic generated by thyristor on the circuit breaker; in such case, it must be used by derating, and the recommended derating factor is (0.5~0.8).
- d. After the user installs the busbar, the electric clearance between upper and lower busbar fastening bolts should not be less than 20 mm.
- e. After the circuit breaker is installed, the safe spacing between different potential electrified bodies and between the electrified body and ground should be not less than 18mm.

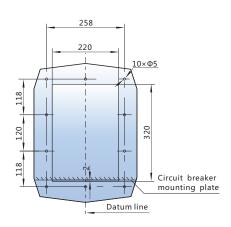

Dimension And Installation

NA8-1600 draw-out type (In preparation...)

Front view

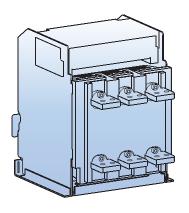


Side view

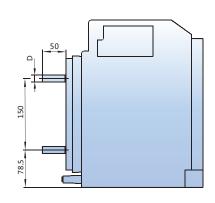


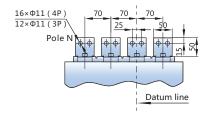
Hole size

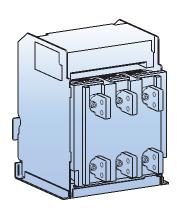
Hole size of the base



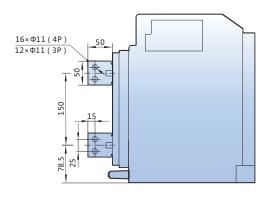
Hole size of the panel

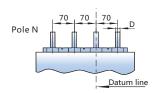

Horizontal connection


Side view

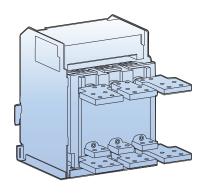

In(A)	D(mm)
200~800	10
1000~1600	16

Busbar mounting dimensions

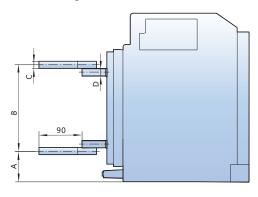


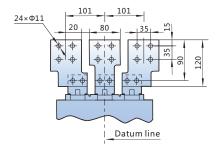

Vertical connection

In(A)	D(mm)
200~800	10
1000~1600	16


Busbar mounting dimensions

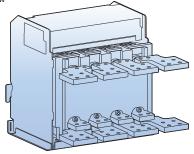
Three-pole product horizontal extension busbar (optional)


Side view



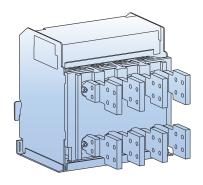
Unit: mm In(A) D 200~800 68.5 169 10 10 1000~1600 63 179 15 16

Note: The extension busbar is of optional accessory, requiring additional expense.


Busbar mounting dimensions

Four-pole product horizontal extension busbar (optional)

Side view

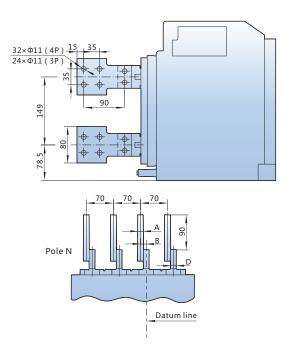

			Un	it: mn
In(A)	Α	В	С	D
200~800	68.5	169	10	10
1000~1600	63	179	15	16

Busbar mounting dimensions 32×Ф11 Datum line

Note: The extension busbar is of optional accessory, requiring additional expense.

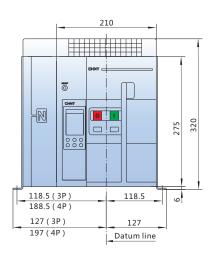
Vertical extension busbar (optional)

Side view

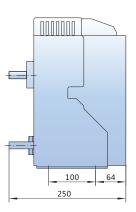

 In(A)
 A
 B
 D

 200~800
 10
 10
 10

 1000~1600
 15
 15.5
 16

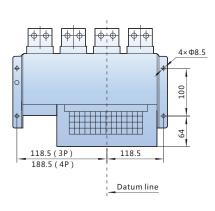

Note: The extension busbar is of optional accessory, requiring additional expense.

Busbar mounting dimensions

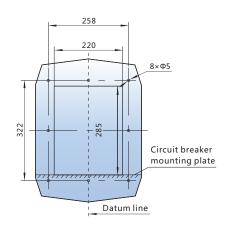


NA8-1600 fixed type (In preparation...)

Front view

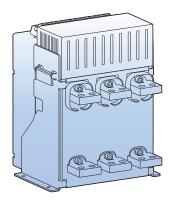


Side view



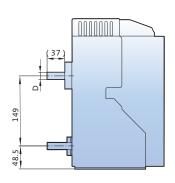
Hole size

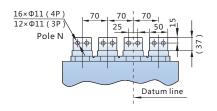
Hole size of the base



Hole size of the panel

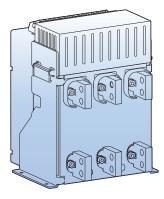
Horizontal connection


Side view

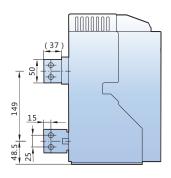


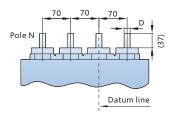
In(A)	D(mm)
200~800	10
1000~1600	16

Note: If the user intends to change horizontal connection into vertical connection at site, it only needs to rotate the busbar by 90°.


Busbar mounting dimensions

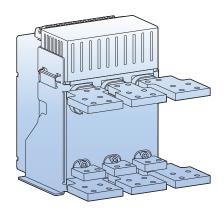
Vertical connection


Side view

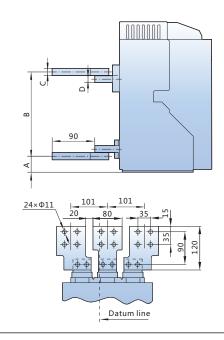


In(A)	D(mm)
200~800	10
1000~1600	16

Note: If the user intends to change vertical connection into horizontal connection at site, it only needs to rotate the busbar by $90^\circ.$


Busbar mounting dimensions

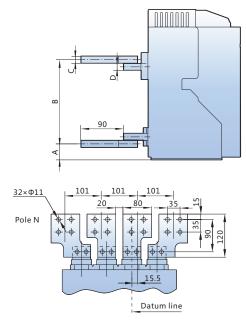
Three-pole product horizontal extension busbar connection (optional)


Side view

			Uni	t: mm
In(A)	Α	В	С	D
200~800	38.5	169	10	10
1000~1600	33	179	15	16

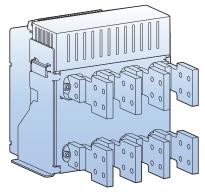
 $Note: The\ extension\ busbar\ is\ of\ optional\ accessory,\ requiring\ additional\ expense.$

Busbar mounting dimensions


Four-pole product horizontal extension busbar connection (optional)

Side view

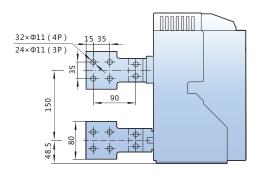
			Unit	: mm
In(A)	Α	В	С	D
200~800	38.5	169	10	10
1000~1600	33	179	15	16

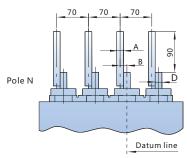

Busbar mounting dimensions

 $Note: The\ extension\ busbar\ is\ of\ optional\ accessory,\ requiring\ additional\ expense.$

Vertical connection of extension busbar (optional)

Side view

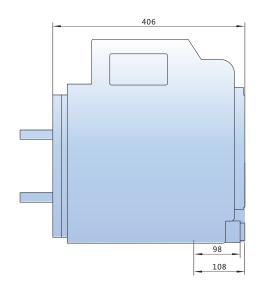



Unit: mm

In(A)	Α	В	D		
200~800	10	10	10		
1000~1600	15	15	16		

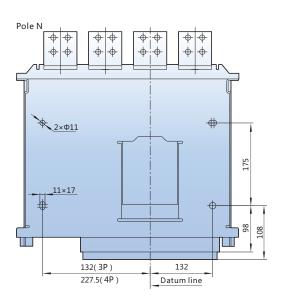
Note: The extension busbar is of optional accessory, requiring additional expense.

Busbar mounting dimensions

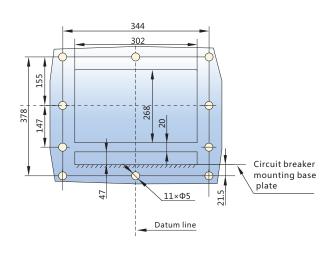


NA8-2500 Draw-out type

Front view

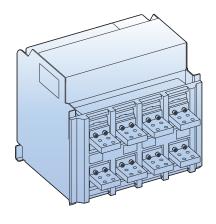


Side view

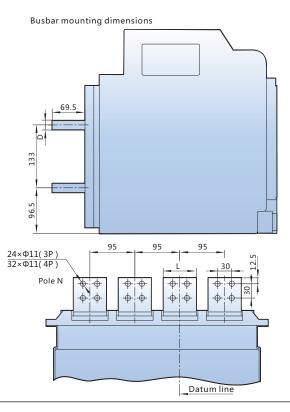


Hole size

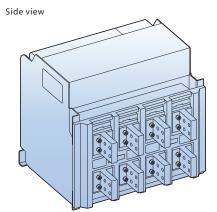
Hole size of the base



Hole size of the panel

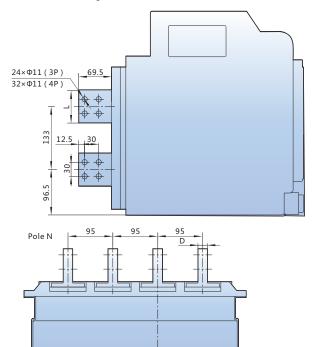

Horizontal connection

Side view



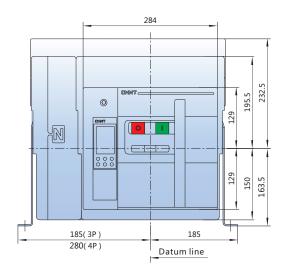
		Unit: mm
In (A)	D	L
630~1600	15	60
2000~2500	20	70

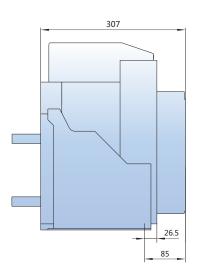
Note: If the user intends to change horizontal connection into vertical connection at site, it only needs to rotate the busbar by 90° .


Vertical connection

		Unit: mm
In (A)	D	L
630~1600	15	60
2000~2500	20	70

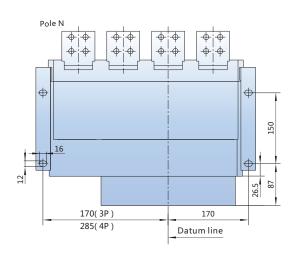
Note: If the user intends to change vertical connection into horizontal connection at site, it only needs to rotate the busbar by 90° .


Busbar mounting dimensions

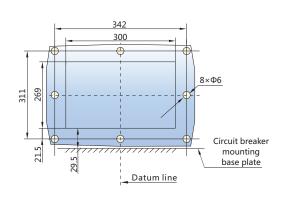

Datum line

NA8-2500 fixed type

Front view



Side view

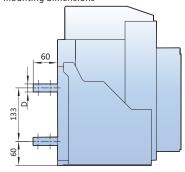


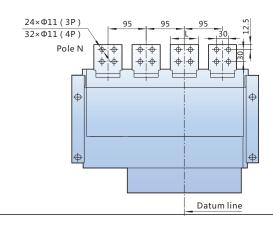
Hole size

Hole size of the base

Hole size of the panel

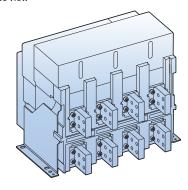
Horizontal connection

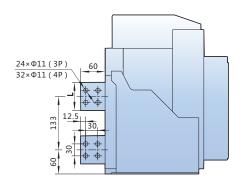

Side view

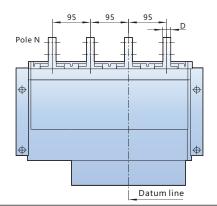


		Unit: mm
In (A)	D	L
630~1600	15	60
2000 - 2500	20	70

Note: If the user intends to change horizontal connection into vertical connection at site, it only needs to rotate the busbar by $90^\circ\!.$


Busbar mounting dimensions

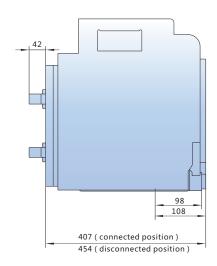

Vertical connection


Side view

		Unit: mm
In (A)	D	L
630~1600	15	60
2000~2500	20	70

Busbar mounting dimensions

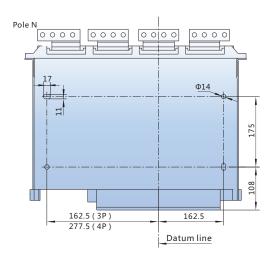


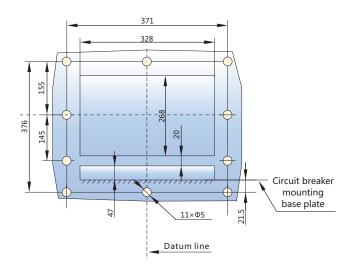

Note: If the user intends to change vertical connection into horizontal connection at site, it only needs to rotate the busbar by 90° .

NA8-4000 draw-out type

Front view

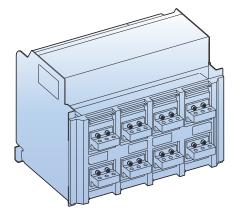
Side view

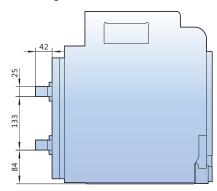


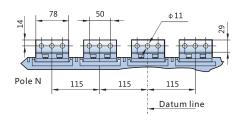


Hole size

Hole size of the base

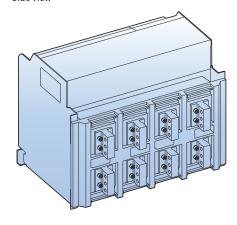

Hole size of the panel

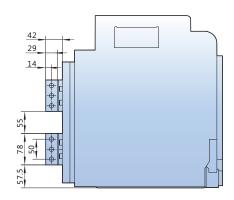


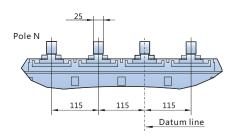

Horizontal connection (In=1600A~2500A)

Side view

Busbar mounting dimensions

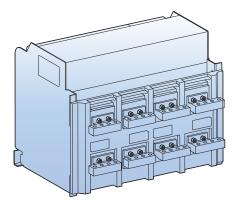


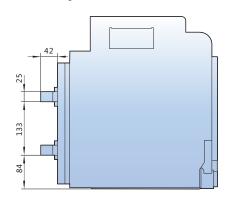

Note: If the user intends to change horizontal connection into vertical connection at site, it only needs to rotate the busbar by 90°.

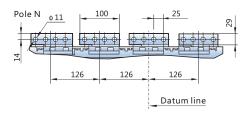

Vertical connection (In=1600A~2500A)

Side view

Busbar mounting dimensions

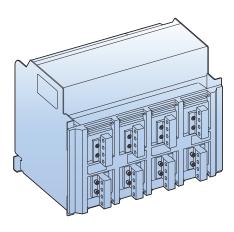



Note: If the user intends to change vertical connection into horizontal connection at site, it only needs to rotate the busbar by 90°.

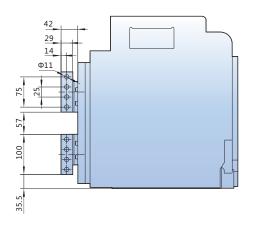

Horizontal connection (In=3200A~4000A)

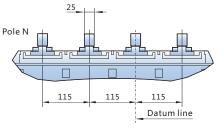
Side view

Busbar mounting dimensions

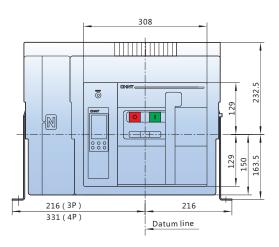


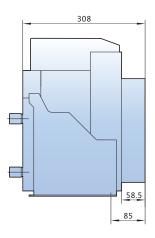
Note: If the user intends to change horizontal connection into vertical connection at site, it needs to change the upper and lower busbars of phases N and B into the same busbars of phases A and C.


Vertical connection (In=3200A~ 4000A)


Side view

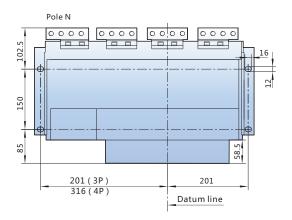
Note: If the user intends to change vertical connection into horizontal connection at site, it needs to change the upper and lower busbars of phases N and B into the same busbars of phases A and C.


Busbar mounting dimensions

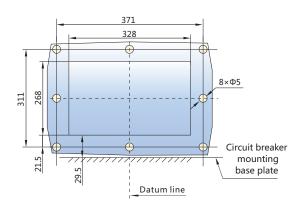


NA8-4000 fixed type

Front view

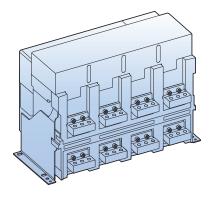


Side view

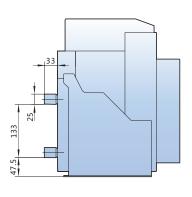


Hole size

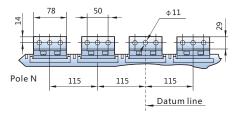
Hole size of the base



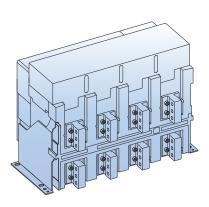
Hole size of the panel



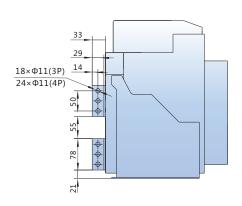
Horizontal connection (In=1600A~2500A)

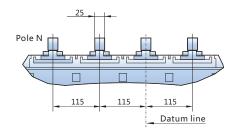

Side view

Busbar mounting dimensions



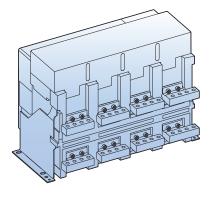
Note: If the user intends to change horizontal connection into vertical connection at site, it only needs to rotate the busbar by 90°.

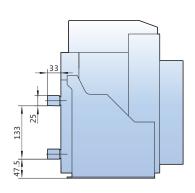



Vertical connection (In=1600A~2500A)

Side view

Busbar mounting dimensions

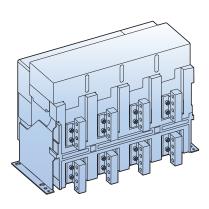


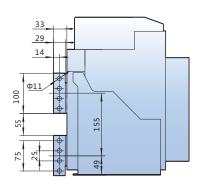

Note: If the user intends to change vertical connection into horizontal $% \left(1\right) =\left(1\right) \left(1\right) \left($ connection at site, it only needs to rotate the busbar by 90°.

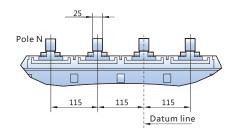

Horizontal connection (In=3200A~4000A)

Side view

Busbar mounting dimensions

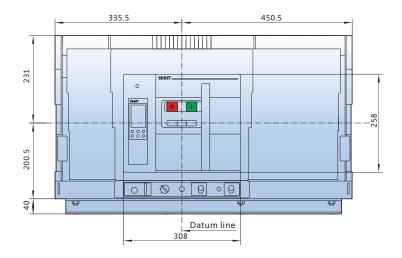


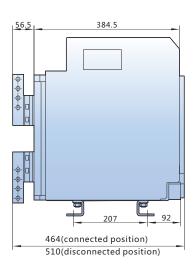

Note: If the user intends to change horizontal connection into vertical connection at site, it needs to change the upper and lower busbars of phases N and B into the same busbars of phases A and C.


Vertical connection (In=3200A~4000A)

Side view

Busbar mounting dimensions

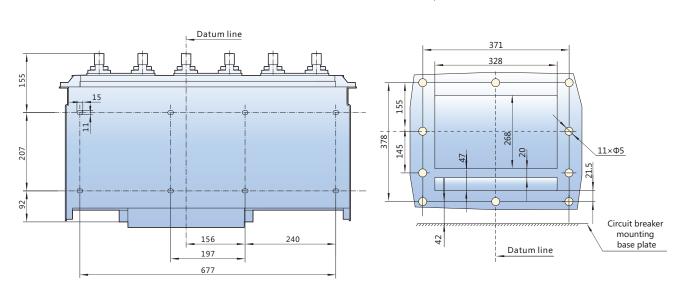




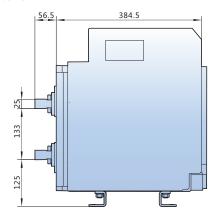
Note: If the user intends to change vertical connection into horizontal connection at site, it needs to change the upper and lower busbars of phases N and B into the same busbars of phases A and C.

NA8-7500 (In= $4000A \sim 6300A$) three-pole draw-out type

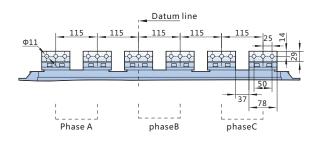
Front view Side view



Hole size

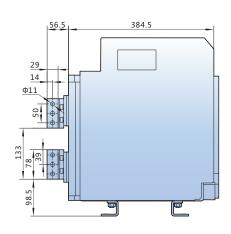

Hole size of the base

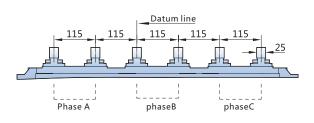
Hole size of the panel



Horizontal connection (In=4000A \sim 5000A/ three poles)

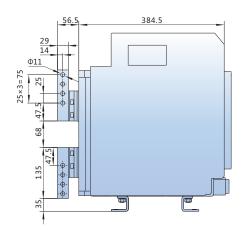
Side view

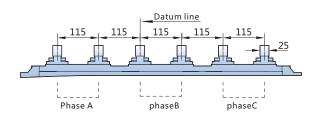

Busbar mounting dimensions


Note: If the user intends to change horizontal connection into vertical connection at site, it only needs to rotate the busbar by $90^\circ\!.$

Vertical connection (In=4000A~ 5000A/ three poles)

Side view

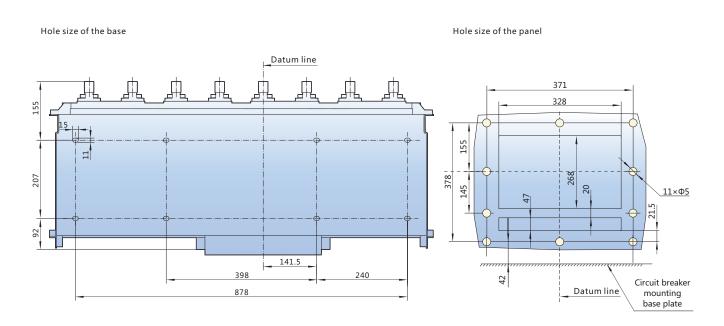

Busbar mounting dimensions


Note: If the user intends to change vertical connection into horizontal connection at site, it only needs to rotate the busbar by 90° .

Vertical connection (In=6300A/ three poles)

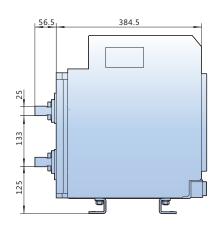
Side view

Busbar mounting dimensions

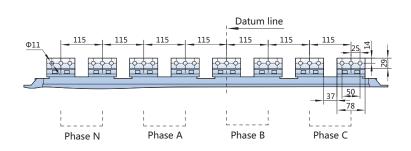

Note: In=6300A only has vertical connection and has no horizontal connection.

NA8-7500 draw-out type (In=4000A \sim 6300A) four poles/ (In=7500A) three & four poles

Front view Side view

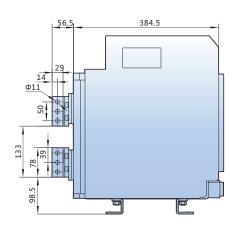

510(disconnected position)

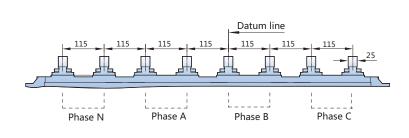
Hole size



Horizontal connection (In=4000A ~ 5000A/ four poles)

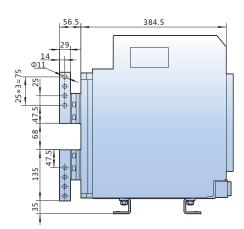
Side view

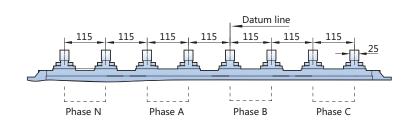

Busbar mounting dimensions


Note: If the user intends to change horizontal connection into vertical connection at site, it only needs to rotate the busbar by 90°.

Vertical connection (In=4000A~ 5000A/ four poles)

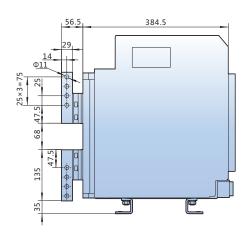
Side view

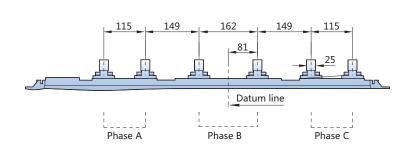

Busbar mounting dimensions


Note: If the user intends to change vertical connection into horizontal connection at site, it only needs to rotate the busbar by 90°.

Vertical connection (In=6300A/ four poles)

Side view

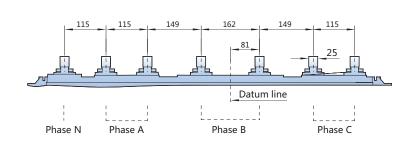

Busbar mounting dimensions


Note: In=6300A only has vertical connection and has no horizontal connection.

Vertical connection (In=7500A/ three poles)

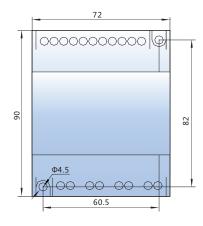
Side view

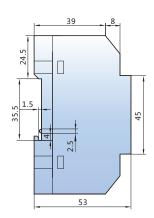
Busbar mounting dimensions


Note: In=7500A only has vertical connection and has no horizontal connection.

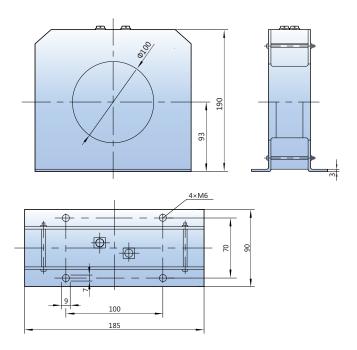
Vertical connection (In=7500A/ four poles)

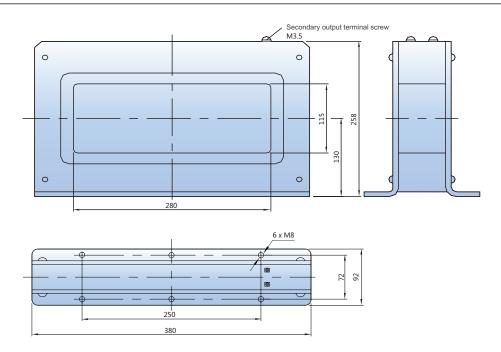
Side view


56.5 384.5


Busbar mounting dimensions

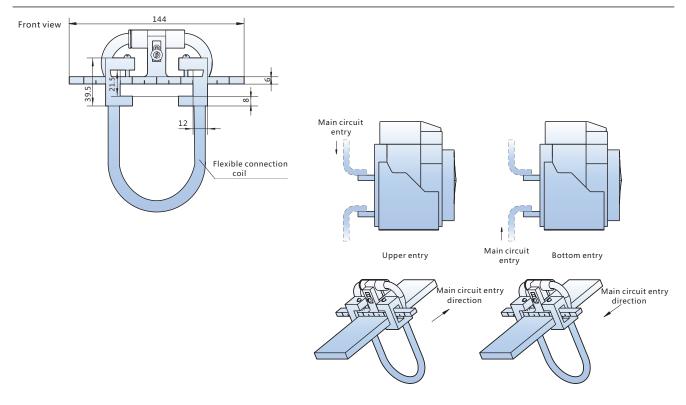
Note: In=7500A only has vertical connection and has no horizontal connection.


Dimensions of undervoltage time delay control module, power module, RU-1 relay signal module



Note: Undervoltage time delay control module, power module, RU-1 relay signal module have consistent overall dimensions, and can be installed using the 35mm standard DIN rail mounting.

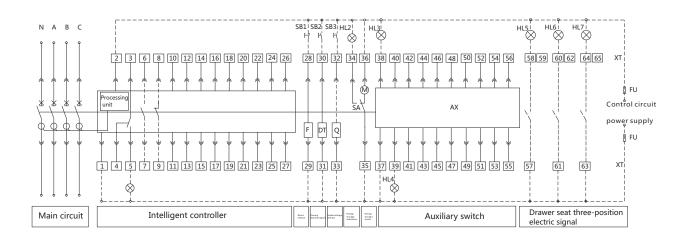
Dimensions of ground current transformer



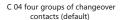
Dimensions of leakage protection transformer

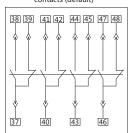
Note: The circuit breaker selected with the leakage transformer should use the vertical busbar connection mode.

Dimensions of neutral pole current transformer

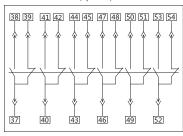


Note: 1. Upon fixing the neutral transformer, it needs to install it at the entry end of circuit breaker, and one side of its flexible cable should face the entry direction of main circuit.

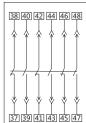

2. When the rated current is 200A-630A, the transformer needs to be wrapped around the busbar twice to be used normally.


Secondary Circuit Wiring

NA8-1600 (In preparation...) M Type controller



Type of AX auxiliary contact Used by the user



C 06 six groups of changeover contacts (optional)

N 3 3 NO 3 NC contacts (optional)

F—Shunt release DT—Closing electromagnet

Q-Undervoltage release

M-Motor-driven mechanism

SA—Travel switch XT—Connection terminal

AX—Auxiliary contact SB1—Breaking button

SB2—Making button SB3—Emergency stop button

HL1—Fault indicator light HL2—Energy storage indicator light

HL3—Breaking indicator light

HL4—Making indicator light

HL5 ~7 —Position indicator light

FU—Fuse (6A)

1#, 2#: Intelligent controller power supply: voltage AC220/380V can be directly connected to 1#, 2#; If voltage is DC220/110V, it needs to through the power module,and the power module outputs 24V which can be connected to 1#, 2#.

3#~5#: Tripping alarm contact (3 is the common point.)

6#~ 9#: Auxiliary contact (1 NO and 1 NC), optional.

10#, 11#: Empty

12#~ 19#: Empty

20#: Empty

21#~24#: Empty

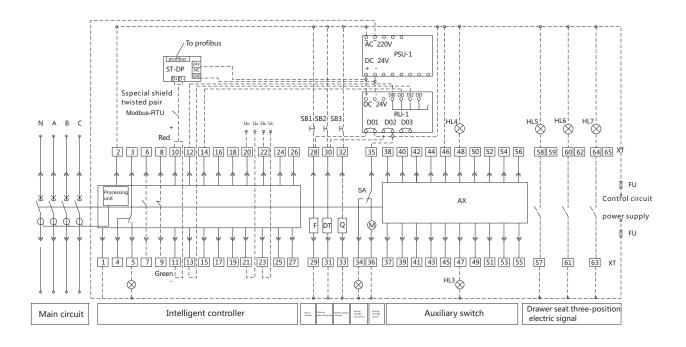
24#, 25#: The contacts for external phase N transformer input signal; for conventional product, they are empty, and should be ordered by the user specifically. Where external transformer is required, they are the external transformer signal input contacts.

27#: Protective grounding, is connected to the outer board of the circuit breaker;

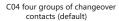
28#, 29#: Shunt release;

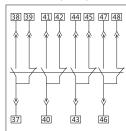
30#, 31#: Closing electromagnet;

32#, 33#: Undervoltage release.

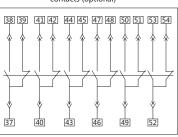

34#~36#: Motor-driven mechanism.

37#~56#: Auxiliary contact.The conventional product has 4 groups of changeover auxiliary contacts; in case of special order from the user, 6 groups of changeover contacts can be provided, 3 NO 3C contacts. 6 groups of changeover contacts are used for AC only.

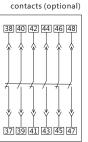

57#~65#: Draw-out type circuit breaker three-position signal indication; the conventional supply has not wire connection, is only for the draw-out type circuit breaker with the secondary functions selected.


Note: The part in solid line has been connected by the factory, and the part in dashed line shall be connected by the customer.

NA8-1600 (In preparation...)



Type of AX auxiliary contact Used by the user



C06 six groups of changeover contacts (optional)

N3 3 NO 3 NC

F — Shunt release DT — Closing electromagnet

Q —Undervoltage release

M —Motor-driven mechanism

SA —Travel switch XT —Connection terminal

AX —Auxiliary contact SB1 —Breaking button

SB2 —Making button SB3 —Emergency stop button

HL1 —Fault indicator light

HL2 —Energy storage indicator light

HL3 —Breaking indicator light

HL4 —Making indicator light

HL5 ~ 7 —Position indicator light

FU —Fuse (6A)

1#, 2#: Intelligent controller power supply: voltage AC220/380V can be directly connected to 1#, 2#; If voltage is DC220/110V, it needs to through the power module, and the power module outputs 24V which can be connected to 1#, 2#.

3#~5#: Tripping alarm contact (3 is the common point)

 $6#\sim9#$: Auxiliary contact (1 NO and 1 NC), optional.

10#, 11#: Type H intelligent controller default communication output contact.

12#~15#: 3 groups of programmable output signal, which must be connected with external RU-1 relay module. When type H intelligent controller has programmable output signal, default output: 12 #, 13#: Closing signal output, 12#,14 #: Opening signal output,12 #, 15 #: Fault tripping. The conventional product has no such connection.

19# : H type intelligent controller communication shielding ground wire

20#~23#: Voltage display input signal contact,20#: Phase N voltage signal,21#: Phase A voltage signal, 22#: Phase B voltage signal,23#: Phase C voltage signal. The conventional product has no such connection.

24#, 25#: External Phase N transformer or external earth current transformer input signal contact; for conventional product, they are empty, and should be ordered by the user specifically. Where external transformer is required, they are the external transformer signal input contacts.

27#: Protective grounding, is connected to the outer board of the circuit breake;

28#, 29#: Shunt release:

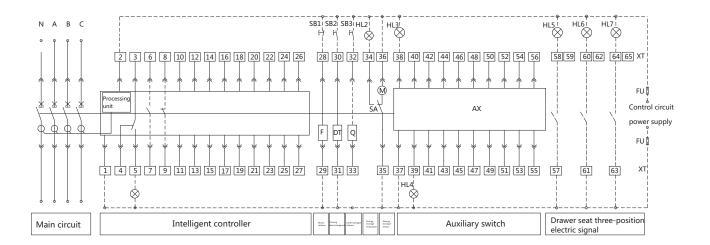
30#, 31#: Closing electromagnet;

32#, 33#: Undervoltage release.

34 #~ 36 #: Motor-driven mechanism.

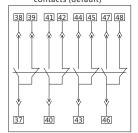
37 #~ 56 #: Auxiliary contact. 6 groups of changeover contacts are used for AC only. The conventional product has 4 groups of changeover auxiliary contacts; in case of special order from the user, 6 groups of changeover contacts, 3 NO 3C contacts can be provided.

57#~ 65#: Draw-out type circuit breaker three-position signal indication; the conventional supply has not wire connection, is only for the draw-out type circuit breaker with the secondary functions selected.

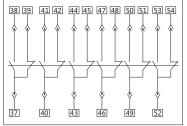

ST-DP: DP protocol module; when the upper computer communication protocol is Modbus-RTU, ST-DP protocol module is not required; when the upper computer communication protocol is Profibus-DP, ST-DP protocol module is required to change the Modbus-RTU protocol into Profibus-DP protocol with the cost separately charged.

RU-1:Relay module. The upper computer remotely controls it to open or close the circuit breaker, and it is used for amplifying the opening and closing signal energy with the cost separately charged.

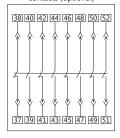
Note: The part in solid line has been connected by the factory, and the part in dashed line shall be connected by the customer.

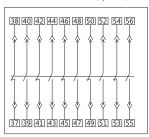

Secondary Circuit Wiring

NA8-2500/4000/7500 M Type controller



Type of AX auxiliary contact Used by the user


C 04 four groups of changeover


C 06 six groups of changeover contacts (optional)

N 4 4NO&4NC contacts (optional)

N 5 5NO&5NC contacts (optional)

F—Shunt release DT —Closing electromagnet

Q —Undervoltage release

M-Motor-driven mechanism

SA—Travel switch XT—Connection terminal

AX—Auxiliary contact SB1—Breaking button

SB2—Making button SB3—Emergency stop button

HL1—Fault indicator light HL2—Energy storage indicator light

HL3—Breaking indicator light HL4—Making indicator light

HL5 ~ 7—Position indicator light

FU—Fuse (6A)

1#, 2#: Intelligent controller power supply: voltage AC220/380V can be directly connected to 1#, 2#; If voltage is DC220/110V, it needs to through the power module,and the power module outputs 24V which can be connected to 1#, 2#.

3#~ 5#: Tripping alarm contact (3 is the common point)

6#~ 9#: Auxiliary contact (1 NO and 1 NC),optional

10#, 11#: Empty

12#~ 19#: Empty

20#: Empty

21#~ 24#: Empty

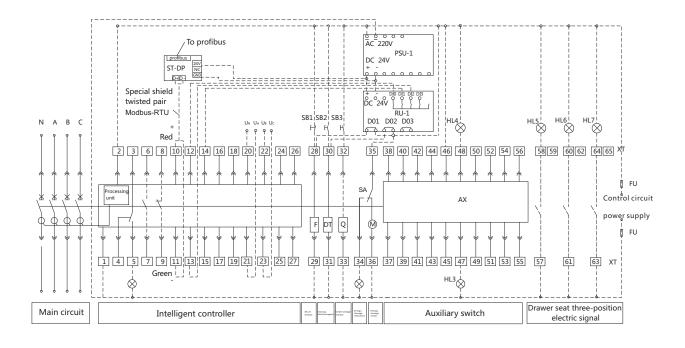
24#, 25#: The contacts for external Phase N transformer input signal; for conventional product, they are empty, and should be ordered by the user specifically. Where external transformer is required, they are the external transformer signal input contacts.

27#: Protective grounding, is connected to the outer board of the circuit breaker;

28 #, 29 #: Shunt release;

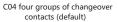
30#, 31#: closing electromagnet;

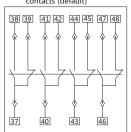
32 #, 33 #: Undervoltage release.

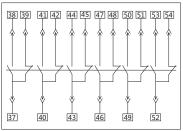

34 #~36 #: Motor-driven mechanism.

37#~56#: Auxiliary contact. 6 groups of changeover contacts are used for AC only. The conventional product has 4 groups of changeover auxiliary contacts; in case of special order from the user, 6 groups of changeover contacts, 4 NO 4 NC contacts and 5 NO 5 NC contacts can be provided.

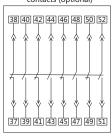
57#~ 65#: Draw-out type circuit breaker three-position signal indication, the conventional supply has not wire connection, is only for the draw-out type circuit breaker with the secondary functions selected.

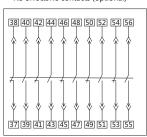

Note: The part in solid line has been connected by the factory, and the part in dashed line shall be connected by the customer.


NA8-2500/4000/7500 H Type controller


Type of AX auxiliary contact

Used by the user




C06 six groups of changeover contacts (optional)

N4 4NO&4NC contacts (optional)

N5 5NO&5NC contacts (optional)

F —Shunt release DT —Closing electromagnet

Q —Undervoltage release

M —Motor-driven mechanism

SA —Travel switch XT —Connection terminal

AX —Auxiliary contact SB1 —Breaking button

SB2 —Making button SB3 —Emergency stop button

HL1 —Fault indicator light HL2 —Energy storage indicator light

HL3 —Breaking indicator light HL4 —Making indicator light

HL5~7 —Position indicator light

FU —Fuse (6A)

1#, 2#:Intelligent controller power supply: voltage AC220/380V can be directly connected to 1#, 2#;If voltage is DC220/110V, it needs to through the power module,and the power module outputs 24V which can be connected to 1#, 2#.

3#~5#: Tripping alarm contact (3 is the common point)

6#~9#: Auxiliary contact (NO contact), optional.

10# , 11#: Type H intelligent controller default communication output contact.

12#~15#: 3 groups of programmable output signal, which must be connected with external RU-1 relay module.When type H intelligent controller has programmable output signal, default output: 12#, 13#: Closing signal output, 12#, 14#: Opening signal output, 12#, 15 #: Fault tripping. The conventional product has no such connection.

19#: H type intelligent controller communication shielding ground wire

20#~23#:Voltage display I nput signal contact, 20#: Phase N voltage signal, 21#: Phase A voltage signal, 22#: Phase B voltage signal, 23#: Phase C voltage signal. The conventional product has nsuch connection.

24#, 25#: External Phase N transformer or external earth current transformer input signal contact; for conventional product, they are empty, and should be ordered by the user specifically., where external transformer is required, they are the external transformer signal input contacts.

27#:Protective grounding, is connected to the outer board of the circuit breake;

28 #, 29 #: Shunt release;

30#, 31#: Closing electromagnet;

32#, 33#: Undervoltage release.

34 #~ 36 #: Motor-driven mechanism.

37 #~56 #: Auxiliary contact. 6 groups of changeover contacts are used for AC only. The conventional product has 4 groups of changeover auxiliary contacts; in case of special order from the user, 6 groups of changeover contacts, 4 NO 4 NC contacts or 5 NO 5 NC can be provided.

57#~ 65#: Draw-out type circuit breaker three-position signal indication, the conventional supply has not wire connection, is only for the draw-out type circuit breaker with the secondary functions selected.

ST-DP: DP protocol module, when the upper computer communication protocol is Modbus-RTU, ST-DP protocol module is not required; when the upper computer communication protocol is Profibus-DP, ST-DP protocol module is required to change the Modbus-RTU protocol into Profibus-DP protocol with the cost separately charged.

RU-1: Relay module. The upper computer remotely controls it to open or close the circuit breaker, and it is used for amplifying the opening and closing signal energy with the cost separately charged.

Note: The part in solid line has been connected by the factory, and the part in dashed line shall be connected by the customer.

Circuit Breaker Configuration

	NA8-1600 (In preparation)		NA8-2500		NA8-4000		NA8-7500
Standard component	Fixed type	Draw-out type	Fixed type	Draw-out type	Fixed type	Draw-out type	Draw-out type
Circuit breaker body	•	-	-	-	-	-	•
Drawer seat		•		-		•	•
Intelligent controller	•	-	•	-	•	•	•
Upper and lower horizontal connection	•	-		-	-	-	•
Auxiliary contact 4CO	•	-	-	-	•	•	•
Fault tripping indication contact	•	-		-	•	•	•
Motor-driven operating mechanism	•	-	-	-	•	-	•
Closed electromagnet	•	-	-	-	•	•	•
Shunt release		-	-	•	•	-	•
Door frame			-	-			•

Note: The table above is the standard configuration of motor-driven type

	NA8-1600 (In preparation)		NA8-2500		NA8-4000		NA8-7500
Optional accessory	Fixed type	Draw-out type	Fixed type	Draw-out type	Fixed type	Draw-out type	Draw-out type
Undervoltage time delay release	•	•	•	-		-	-
Undervoltage instantaneous release	-	•	•	-	•	-	-
Opening/closing button lock	•		-			-	
Drawer position padlock							
Drawer safety barrier padlock		-		-			-
Body key lock							
Position door interlock		-					-
Condition door interlock							
Auxiliary contact 6CO		-		-	-		-
Auxiliary contact 3NO + 3NC	-	-					
Auxiliary contact 4NO + 4NC				-			-
Auxiliary contact 5NO + 5NC							
Drawer position indication contact		-		-			-
Mechanical interlock (two)							
External neutral line transformer	-	-	•	-			-
Ground current transformer and accessories			•	-			-
Interphase insulating barrier	-	-	•	-			-
Mechanical interlock (three)				-			-

Circuit Breaker Type Selection Table

Frame current	NA8-1600 (In preparation)	NA8-2500	NA8-4000	NA8-7500		
Circuit breaker	N 🗆	Н	Н□	N 🗆	Н□	
	200A 🗆	630A □	2000A □	4000 A □	4000A □	
	400A □	800A □	2500A □	5000A □	5000A □	
	630A □	1000A □	3200A 🗆	6300A □	6300A □	
Rated current	800A □	1250A □	4000A □	7500A □	7500A 🗆	
	1000A □	1600A □	1600A □			
	1250A □	2000A □				
	1600A □	2500A □				
Number of poles	3 poles □ 4 po	les 🗆				
Mounting mode	Draw-out type ☐ Fixed	d type 🛚 (NA8-7500 has no fix	red type)			
Busbar connection mode	Horizontal connection Vertical connection Mixed connection (indicating the connection mode)					
Intelligent controller	M type ☐ H type ☐ (basic type) (communicat					
Shunt, closing, motor	Closing electromagnet	Shunt release	Energy storage motor $\ \square$			
Silulit, closing, motor	AC220/230V □ AC3	880/400V □ DC	220V □ DC110V			
Undervoltage release	UVT 🗆	UVTD 🗆				
Officer voltage release	AC220/230 V □	AC380/400 V □				
Auxiliary contact	NA8-1600 C04 (standard) C06 (only for AC) N3 (only for AC) NA8-2500、NA8-4000~7500 C04 (standard) C06 N4 N5					
Auxiliary contact indication (optional)	Drawer seat three-position signal de	vice 🗆				
Connecting accessory (optional)	Interphase insulating barrier \square NA8-1600 extension busbar \square					
Controller function and accessories (optional)	External transformer: Phase N external transformer					
La elema chanier-						
Lock mechanism (optional)	Breaking/Making button lock 🛚	One lock one key Two	locks one key Three lock	s two keys 🗆		
Mechanical interlock (optional)	Wire rope interlock (two interlock)	☐ Wire rope interlock	(MIT-3) Wire rope interloc	(MIT- 4) □		
Module (optional)	PSU-1□ RU-1□	ST-DP protocol conversion mo	odule 🗆			

Remark: Upon placing an order, the frame current, rated current and auxiliary control voltage must be indicated!

Notes: 1) Please check the \Box corresponding to required option with " $\sqrt{}$ " or "-", and fill the figure; if there is no marking, we will provide the goods according to the conventional factory setting.

2) If the additional functions and special requirement are selected, additional expense will incur separately. TEL: 0577-62877777 - 706213. FAX: 0577 - 62877777-706288.

Configuration explanations

I. NA8-1600~2500、 NA8-4000 ~7500 conventional configuration explanationsShunt release, closing electromagnet, 4 groups changeover contacts, motor, M type intelligent controller, main circuit horizontal connection, door frame,main circuit mounting bolts, circuit breaker operation manual, packing case, drawer seat (draw-out type circuit breaker)

II. Optional configuration (with additional expense)

NA8-1600 optional configuration explanations: undervoltage instantaneous release, undervoltage time delay release, wire rope interlock, key lock, external transformer earth protection function, 6 groups of changeover contacts, 3NO 3NC contacts, H type intelligent controller, optional type H function, interphase insulating barrier, position signal.

NA8-2500、NA8-4000~7500 optional configuration explanations: undervoltage time delay release (1s~5s adjustable), wire rope interlock, button lock, key lock, door interlock, external transformer ground protection function, vertical connection, 6 groups of changeover contacts, 4NO 4NC contacts, 5NO5NCcontacts, type H intelligent controller, optional H type function, position signal.

Note	