Europe

Italy

CHINT Italia Investment S.r.I.
Add: Via A. Pacinotti 28, 30033 Noale (VE)
Tel: +39 041446614
E-mail: info@chint.it

Czech Republic

NOARK Electric Europe s.r.o.
Add: Sezemická 2757/2, 19300 Prague 9
Tel: +420226203120 Email: Europe@noark-electric.com

Turkey

Chint Turca Elektrik Sanayi VE Ticaret Anonim Sirketi
Add: Zumrutevler Mahallesi Ural Sokak No. 22/18 NAS PLAZA B Block
KAT 1, Maltepe, Istanbul
Tel: +90216 6210055
Fax:+90216 6210050
E-mail: fatura@chint.com.tr

Spain

CHINT Electrics S.L.

Add: Calle José Echegaray, Num 8.Parque Empresarial Las Rozas Edificio 3, Planta Baja, Oficina 7-8.C.P: 28232 Las Rozas (Madrid)
Tel: $0034916365998 \quad$ Fax: 0034916459582
E-mail: info@chint.eu

Russia

ООО "Чинт Электрик"
Юридический адрес: 109544, г. Москва, 6-р Энтузиастов, д. 2,
этаж 19, ком. 71; 72
Фактический адрес: РФ, 109544, г. Москва, 6-р Энтузиастов, д. 2
Тел: +7 (495) 540-61-41
Тел: +7 (800) 222-61-41
E-mail: cis@chint.com

North America

United States

NOARK Electric (USA) Inc.
Add: 2188 Pomona Blvd., Pomona, CA 91768
Tel: 626-330-7007
E-mail: nasales@noark-electric.com

Mexico

CHINT SOLAR MEXICO S DE RL DE CV
Add: Miguel Cervantes Saavedra 169 Piso 11
Col. Granada Del. Miguel Hidalgo C.P. 11520 CDMX, México
Tel: +52 1-55-8881-6127
E-mail: marie.casillas@chint-mexico.com

West Asia \& Africa

U.A.E

CHINT MIDDLE EAST AND AFRICA DMCC
Add: Unit No: 2101, Jumeirah business center 1, Jumeirah Lakes Towers, Dubai UAE
Tel: +97145571532
P.O BOX:337555

Email: chintwaa@chint.com

Egypt

CHINT Electrics (Egypt) Co., Ltd.
Add: Chint office, Smart village, October 6th, Giza, Egypt
Tel: +20 1097173769
P.O BOX : 00202

Email: chinteg@chint.com

Latin America

Brazil

Chint Elétricos América do Sul Ltda.
Add: Av. Paulista, 1765 - Edifício Scarpa-Conj. 22
Bela Vista -CEP 01311-200-São Paulo- SP
Tel: 0055-11-3266-7654
E-mail: chintlatinamerica@chint.com, xjie@chint.com

Peru

CHINT LATAM(PERU) S.A.C.
Add.: Camino Real 348 oficina 603, San Isidro, Lima
Tel: +5117634917
Email: chintlatamperu@chint.com; yn@chint.com

Asia Pacific

China

Zhejiang CHINT Electrics Co., Ltd.
Add (Shanghai): Bldg.2, No. 3255 Sixian Road, Songjiang 201614 P.R.China
Tel: 0086-21-67777706 Fax: 0086-21-67777777-88225
E-mail: asiapacific@chint.com

India

CHINT India Energy Solution Private limited
Discovery Tower Plot No. A-17 Ground Floor Industrial Area Sector: - 62 Noida - 201301
India Hotline: - 18002707977
Company: - +91 1202975057 E-mail: marketing@chint.co.in

CHNT
 CHINT ELECTRIC

Zhejiang Chint Electrics Co., Ltd.
Add: No. 1, CHINT Road, CHINT Industrial Zone, North Baixiang, Yueqing, Zhejiang, 325603, P.R.China
Tel: 4001177797
Fax: +86-577-62775769 62871811
E-mail: global-sales@chint.com
Website: http://en.chint.com/
© CHINT Electric All Rights Reserved Recycle Paper Printed
! Specifications and technical data are subject to change without notice.
Please contact us to confirm relevant information on ordering

Empower the World
NA1 Air Circuit Breaker

ABOUT CHINT

CHINT is a world renowned smart energy solution provider.
To comply with the trend of integrated development of modern energy, intelligent manufacturing and digital technology, CHINT has adopted the One Cloud \& Two Nets as business strategy. As the platform of intelligent technology and data application, CHINT Cloud fulfills digital application and services in both internal and external. Based on the Industrial Internet of Things (IIOT), CHINT built an intelligent manufacturing system and realizes intelligent application in electrical industry. Relying on the Energy Internet of Things (EloT), CHINT built its smart energy system and develops the regional EloT mode.

Focusing on energy system of supply, storage, transmission, distribution and consumption, CHINT has core businesses of clean energy, energy distribution, big data and energy value-added services. Furthermore, CHINT pillar businesses include photovoltaic equipment, energy storage, power transmission \& distribution, low-voltage apparatuses, intelligent terminals, software development and control automation. With developing into a platform enterprise, CHINT provides a package of energy solutions for public institutions, industrial \& commercial users and end users, by building a regional smart energy operation ecosphere.

Founded in 1984, CHINT has developed business network in over 140 countries and regions with more than 30,000 employees. CHINT has reached annual sales of 10.5 billion USD, ranking Top 50 Asian Listed Companies and Top 100 China Private Enterprises.

ONE CLOUD \& TWO NETS STRATEGY

CHINT CLOUD

Being the carrier of smart technology and data applications, CHINT Cloud connects corporate in-house manufacturing with operation and management data, realizing digital applications and services internally and externally.

CHINT EloT

Being a user-centric multi-energy complementary smart energy system, CHINT EloT provides a package of energy solutions for governments, industrial \& commercial users and end users

CHINT IIoT

Being a smart manufacturing system based on corporate digital transformation, CHINT IIoT constitutes a flexible, high-efficiency and intelligent industrial system.

RELIABLE QUALITY, BEST-SELLING WORLDWIDE

3 global R\&D centers:
6 worldwide marketing areas :
Asia Pacific, Western Asia and Africa, Europe, Latin America, North America, China

13 manufacturing bases:
China (Wenzhou, Shanghai, Hangzhou, Jiaxing, Xianyang, Jiuquan, Jinan),
Thailand, Egypt, Singapore, Vietnam, Malaysia, Algeria (production line)

20 overseas subsidiaries
16 marketing offices in China
32 international logistics centers
2300 sales companies

CHINT HONORS

Comprehensive Strength

- 2015, top 100 enterprises in China machinery industry
- 2016, top 100 enterprises of Zhejiang Province
- 2017, ranking the 85 th place among top 500 China private enterprises
- 2017, innovative leading enterprise of Zhejiang Province
- 2017, top 100 enterprises in innovation capacity among the national hi-tech enterprises of Zhejiang Province

Independent Innovation

- 2015, Science and Technology Award of China Electrotechnical Society
- 2016, Golden Patent Prize of Zhejiang Province and Patent Recognition Award of Zhejiang Province for two serial products
- 2016, national intellectual property demonstration enterprise
- 2016, group member of China Intellectual Property Society

■ 2016, member of Global Energy Interconnection Development and Cooperation Organization

Quality Management

- 2016, advanced unit and user-satisfied enterprise in national user satisfaction project
- 2016, executive director unit of Asia Quality Function Development Association
- 2017, quality good faith enterprise of China machinery industry
- 2017, national product and service quality good faith demonstration enterprise

Social Responsibilities

- 2014, five-star enterprise of China industry sector in performing social responsibilities
- 2016, National Enterprise of Observing Contract and Valuing Credit
- 2017, credit management demonstration enterprise of Zhejiang Province
- 2018, the 10th "China Charity Award" of the Ministry of Civil Affairs

QUALIFICATION CERTIFICATION

The products have been accredited through China Compulsory Certification (CCC) as well as UL of US, CE of EU, VDE and TÜV of Germany, EAC of Russia, KEMA of Netherlands, RCM of Australia, RCC of South Africa and other international product certifications.

Empower the World

CRAFTSMANSHIP FORGES HIGH-QUALITY PRODUCTS

Craftsmanship Forges High-quality Products

CHINT Electrics, a core controlled company belonging to CHINT Group, it focuses on R\&D, design, manufacturing and sales of low-voltage apparatus products and provides system solutions for building, power supply, hoisting, HVAC, telecommunication and other industrial customers. For over 30 years since its founding, CHINT has provided reliable products and services for over

140 countries and regions, and has become one of world famous low-voltage apparatus brand operators.
CHINT will continuously satisfy the increasing market demand through technical and innovative services advancing with the times, and will provide safer, more reliable products and create more secure and comfortable living environment.

CHINT KUNLUN SERIES

Air Circuit Breaker

- Built-in busbar temperature
sensor ;
- Fine shell-frame division;
- Man-machine
interconnection;
- Strong environmental
adaptability.

Moulded Case Circuit Breaker

- Fine shell-frame division ;
- Line protection ;
- Double insulation
- Man-machine interconnection
- Strong environmental adaptability.

Terminal Distribution
Apparatus

- Clear contact window ;
- Small size and high current
- More current specification options
- Abundant accessories
- Strong environmental adaptability.

Motor Control and Protection

- Suitable for large voltage fluctuation ;
- Humane design ;
- Fine current specification
- More standard auxiliary contacts
- Strong environmental adaptability.

NA1 Air Circuit Breaker

NA1

Page P-001

Summary

5 basic frame sizes
For your various requirements, the Air Circuit Breaker NA1 includes 5 basic frame sizes as followed.

NA1-1000X
200A to 1000A

NA1-2000X,NA1-2000XN, NA1-2000XH
630A to 2000A

NA1-3200X,NA1-3200XN,NA1-4000X
2000A to 4000A

NA1-6300X,NA1-6300XN
4000A to 6300A

1. General

1.1 Application scope

NA1 series air circuit breaker is suitable for the circuit of AC $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ with rated service voltage $400 \mathrm{~V}, 690 \mathrm{~V}$ and rated service current up to 6300A. It is mainly used to distribute electric energy and protect circuits and electric equipment against over-load, under-voltage, short-circuit and singlephase earthing fault.

With intelligentized and selective protection functions, the breaker can improve the reliability of power supply, and avoid unnecessary power failure. The breaker is applicable for power stations, factories, mines (for 690V) and modern highbuildings, especially for the distribution system of intelligentized building.
1.2 Standard: IEC/EN 60947-2.

2. Operating conditions

2.1 Temperature condition:
$-5^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$; the average value within 24 h shall not exceed $+35^{\circ} \mathrm{C}$ (special situation excluded);
2.2 Altitude: $\leq 2000 \mathrm{~m}$;
2.3 Pollution grade: Grade 3;
2.4 Air conditions:

At mounting site, relative humidity not exceed 50% at the max temperature of $+40^{\circ} \mathrm{C}$, higher relative humidity is allowable under lower temperature, RH could be 90% at $+20^{\circ} \mathrm{C}$, special measures should be taken to occurrence of dews;
2.5 Note: Without the intelligent controller, the breaker functions as a switch-disconnector.
2.6 Type designation

NA1 Air Circuit Breaker

1 Drawout type

2 Fixed type

3 Intelligent controller

4 Operating mechanism

5 Auxiliary contact

6 Locking-device

7 Arcing chamber

8 Secondary wiring terminal

9 Wire-cable mechanical interlock

10 Connecting-rod type mechanical interlock
(11) Shunt release
(12) Closing electromagnet

13 Under-voltage release

14 Motor-driven energy-storage mechanism

15 Rotary handle

16 Mounting plate

3. Structure

4. Main technical parameter

User only needs to rotate the busbar for 90° to change from vertical connection to horizontal connection onsite.

ser only needs to rotate the busbar for 90° to change from horizontal connection to vertical connection onsite.

In A	a mm
$2000 \sim 2500$	20
3200	30

NA1-3200X/NA1-3200XN Drawout-type,vertical,rear connection,rotation busbar

[^0]

Note: In order to change horizontal connection to vertical connection onsite, user needs to change the upper and lower busbars of phase B so they are different from those of phase A and phase C.

6. Secondary circuit wiring

6.1 NA1-1000X

HL1: Failure indicator
HL2: Close indicator
HL3: Energy storage indicator
SB1: Under-voltage button
SB2: Shunt button
SB3: Close button
Q: Under-voltage release
F: Shunt release
X: Close electromagnet
M: Energy storage motor
DF1-DF4: Auxiliary switch
1", 2": Auxiliary power input
$3^{*}, 4^{*}, 5^{*}$: Fault trip contact output(4^{*} common terminal, contact capacity AC230V,5A
$6^{*}, 7^{*}$: To be connected with current transformer(selective)

8*, 9^{*} : Making indicator (capacity AC400V,1A)
$27^{\#}, 28^{*}$: Under-voltage release(Connected to the main circuit) 29",30": Shunt release
31",32": Closing electromagnet
$33^{*}, 34^{*}, 35^{*}$: Energy storage motor
$18^{*} \sim 26^{\#}, 38^{*} \sim 40^{*}$: Auxiliary contact
(auxiliary contact capacity: AC230V,5A)

Note:

Dashed is to be connected by users.

HL1: Failure indicator
HL2: Close indicator
HL3: Energy storage indicator
SB1: Under-voltage button
SB2: Shunt button
SB3: Close button
Q: Under-voltage release
F: Shunt release
X: Close electromagnet
M: Energy storage motor
DF1-DF3: Auxiliary switch
$1^{*}, 2^{\#}$: Auxiliary power input(DC24)
$3^{\#}, 4^{\#}, 5^{\#}$: Fault trip contact output(4^{*} common terminal, contact capacity AC230V,5A
$6^{*}, 7^{\#}$: To be connected with current transformer(N/O auxiliary contact, capacity AC400V, 1A, when no current transformer)

Note:

Dashed is to be connected by users.
$8^{*}, 9^{*}$: Making indicator(capacity AC400V, 1A)
$10^{*}, 11^{*}$: communication output
$12^{*}, 13^{*}$: Signal alarm of load 1 output
$14^{*}, 15^{\#}$: Signal alarm of load 2 output
$16^{*}, 17^{*}$: Making signal output
$18^{*}, 19^{*}$: Closing signal output
20*: Communication shield ground line
$21^{*} \sim 24^{*}$: Voltage signal input of phase N,A,B,C
(With voltage measurement);
21\#~23\# is a set of auxiliary switches
(Without voltage measurement)
22\# common terminal,contact capacity AC230V,5A
$25^{*}, 26^{*}$: Auxiliary contact (capacity:AC230V,5A)
$27^{*}, 28^{*}$: Under-voltage release(Connected to the main circuit)
29", 30": Shunt release
31",32": Closing electromagnet
$33^{*}, 34^{*}, 35^{*}$: Energy storage motor
$36^{*} \sim 40^{*}$: Auxiliary contact (capacity:AC230V,5A)

HL1: Failure indicator
HL2: Close indicator
HL3: Energy storage indicator
SB1: Under-voltage button
SB2: Shunt button
SB3: Close button
Q: Under-voltage release
F: Shunt release
X: Close release
M: Energy storage motor
DF1-DF6: Auxiliary switch
1*, 2": Auxiliary power input
$3^{*}, 4^{\#}, 5^{\#}$: Fault trip contact output(4^{*} common
terminal,contact capacity AC230V,5A
$6^{\#}, 7^{\#}$: to be connected with current transformer(selective)

Note:

Six pairs change-over contacts, without any additional function.
Dashed is to be connected by users.

8*, n': $^{\text {: Making indicator (capacity AC400V,1A) }}$
$12^{\#} \sim 26^{\#}$: Auxiliary contact(auxiliary
contact capacity: AC230V,1A)
$27^{\#}, 28^{\#}$: Under-voltage release(Connected to the main circuit)
$29^{*}, 30^{*}$: Shunt release
$31^{*}, 32^{\#}$: Closing release
$33^{*}, 34^{\#}$:Energy storage indicator
$34^{\#}, 35^{\#}$: Energy storage motor
$38^{\#} \sim 40^{\#}$: Auxiliary contact(auxiliary
contact capacity: AC230V,1A)

SB1: Shunt button
SB2: Under-voltage button
SB3: Making button
Q: Under-voltage release
F: Shunt release
X : Closing electromagnet

The auxiliary contact modes for customer use

I Five pairs change-over contacts

M: Energy storage motor
XT: Connection terminal
SA: Position switch
Note: If control voltage of Q F, X is different from each other, they can be connected to different power.
$1^{* \prime}, 2^{\prime \prime}$: Auxiliary power input
$3^{* *}, 4^{*}, 5^{*}$: Fault trip contact output(4\# common terminal)
$6^{*}, 7^{*}, 8^{*}, 9^{*}$: Auxiliary contact, normal open,
$10^{*} \sim 24^{*}$: empty
$25^{*}, 26^{*}$: to be connected with current transformer(selective)
$27^{\prime \prime}, 28^{\prime \prime}$: Under-voltage release(Connected to the main circuit)
29",30": Shunt release
31",32": Closing release
$33^{*}, 34^{*}$: Energy storage indicator
$34^{*}, 35^{*}$: Energy storage motor
36",51": Auxiliary contact

Circuit explanation for signal output:
a. Broken-line parts shall be provided by customers.
b. Terminals $6^{*}, 7^{*}$ can output NC (normal close) contact if that is required by users.
c. Terminal 35^{*} can be directly connected to power (automatic pre-storing energy), alternatively connect power after connecting NO button (manual-controlled pre-storing energy).
d. Terminals $21^{*} \sim 24^{*}$ is only for wiring with function meter display. (excluding the special wiring)

The auxiliary contact modes for customer use
I Four pairs change-over contacts

$3^{*}, 4^{*}, 5^{*}$: Fault trip contact output(4^{*} common terminal)
$6^{*}, 7^{*}, 8^{*}, 9^{*}$: Auxiliary contact(normal open)
$10^{*} \sim 11^{*}$: empty
$12^{*} \sim 19^{*}$: The programmable output terminal. The normal products without these terminals, but if the customer special ordered, the cost extra added.

3M type acquiescence output:
$12^{*}, 13^{\#}$: Signal alarm of load 1 output; $14^{*}, 15^{*}$: Signal alarm of load2 output
$16^{*}, 17^{*}$: Self-diagnose alarm; $18^{*}, 19^{*}$: Fault trip; 20^{*} : PE line; $21^{*} \sim 24^{*}$: Display the voltage of the signal input.
The normal products without these terminals,
if the customer special ordered the function meter, the cost extra added.
$21^{\#}$: N phase input terminal
$22^{*}, 23^{*}, 24^{*}$: A, B, C three phase power input terminal (note the sequence)(highest-voltage of AC 400V)
$25^{*}, 26^{*}$: Connect to the N phase current transformer or the input terminal of the current leakage transformer. The normal products without these terminals, if the customer special ordered, the cost extra added.
$27^{\#}, 28^{*}$: Under-voltage release(Connected to the main circuit); $29^{*}, 30^{*}$: Shunt release; $31^{*}, 32^{*}$: Closing release;
$33^{* \prime}, 34^{*}$: Energy storage indicator; $34^{*}, 35^{* \prime}$: Energy storage motor; $36^{*} \sim 51^{*}$: Auxiliary contact

Note:

a. Red colored part is to be connected by users
b. When the power system is three phase three wire, directly connect the Un to U2.
(If the voltage exceeds 400 V , special explanation when ordered)

The auxiliary contact modes for customer use

$3^{*}, 4^{*}, 5^{*}$: Fault trip contact output(4^{*} common terminal) $6^{\prime \prime}, 7^{*}, 8^{*}, 9^{*}$: Auxiliary contact (normal open)
$10^{*} \sim 11^{\#}$: communication output
$12^{*}, 13^{*}$: Signal alarm of load 1 output; $14^{*}, 15^{*}$: Signal alarm of load2 output
$16^{*}, 17^{*}$:Breaking signal output; $18^{*}, 19^{*}$:Making signal output
20": PE line; $21^{\prime \prime}$: N phase input terminal
$22^{*}, 23^{*}, 24^{*}: A, B, C$ three phase power input terminal (note the sequence)(highest-voltage of AC 400V)
$25^{*} 26^{*}$: Connect to the N phase current transformer or the input terminal of the current leakage transformer. The normal products without these terminals, if the customer special ordered, the cost extra added. ST~DP: DP protocol module. There is no need for the ST-DP protocol module, if the communication protocol is Modbus-RTV. But when the communication protocol is Profibus-DP, the ST-DP protocol module is necessary, but the cost extra added.
ST power module IV: power converter (optional components)
ST201: Magnify the signal capacity of the controller. (optional components) If the customer special ordered, the cost extra added
$27^{*}, 28^{*}$: Under-voltage release(Connected to the main circuit); $29^{*}, 30^{*}$: Shunt release
$31^{*}, 32^{*}$: Closing release; $33^{*}, 34^{*}$: Energy storage indicator
$34^{*}, 35^{*}$: Energy storage motor; $36^{*} \sim 51^{*}$: Auxiliary contact

Note:

a. Red colored part is to be connected by users
b. When the power system is three phase three wire, directly connect the Un to U2.
(If the voltage exceeds 400 V , special explanation when ordered)

The auxiliary contact modes for customer use
I Four pairs change-over contacts

SB1: Shunt button SB2: Under-voltage button SB3: Making button Q: Under-voltage time-delay release F: Shunt release X : Closing electromagnet M : Energy storage motor XT: Connection terminal SA: Position switch Note: If control voltage of $\mathrm{Q}, \mathrm{F}, \mathrm{X}$ is different from each other, they can be connected to different power.

1", 2": Auxiliary power input
$3^{* \prime}, 4^{*}, 5^{*}$: Fault trip contact output(4\# common terminal)
$6^{\# \#}, 7^{\#}, 8^{\#}, 9^{*}$: Auxiliary contact (normal open)
$10^{*} \sim 24^{*}$: empty
$25^{*}, 26^{\#}$: to be connected with current transformer(selective)
$27^{\prime \prime}, 28^{\prime \prime}$: Under-voltage release(Connected to the main circuit)
29*, 30^{*} : Shunt release
31",32": Closing release
$33^{*}, 34^{*}$: Energy storage indicator
$34^{*}, 35^{*}$: Energy storage motor
$36^{*}, 37^{\prime \prime}$: Under-voltage time delay release
$38^{\#} \sim 51^{\#}$: Auxiliary contact
Circuit explanation for signal output:
a. Broken-line parts shall be provided by customers.
b. Terminals $6^{\#}, 7^{\#}$ can output NC (normal close) contact if that is required by users.
c. Terminal $35^{* \prime}$ can be directly connected to power (automatic pre-storing energy),
alternatively connect power after connecting NO button (manual-controlled pre-storing energy).
d. The $21^{\#} \sim 24^{*}$ is only for wiring with function meter display. (Excluding the special wiring)

The auxiliary contact modes for customer use I Four pairs change-over contacts

SB1: Shunt button; SB2: Under-voltage button SB3: Making button; Q: Under-voltage release F: Shunt release; X : Closing release
M: Energy storage motor; XT: Connection terminal SA: Position switch
$1^{* *}, 2^{\prime \prime}$: Intelligent controller power input
Note: When the power supply of the intelligent controller is AC power, the $1^{*} \sim 2^{*}$ connects to the AC power directly. When the power supply is $D C$ power, forbid connecting the $1^{*} \sim 2^{*}$ to the DC power directly. Add a DC power supply module, then the $D C$ power connect to the input terminal of the DC power supply module, and the $1^{*} \sim 2^{*}$ connect to the output terminal of the DC power supply module, or else the intelligent controller will be damaged.
$3^{\#}, 4^{\#}, 5^{\#}$: Fault trip contact output(4* common terminal); $6^{\#}, 7^{\#}, 8^{\#}, 9^{\#}$: Auxiliary contact (normal open)
$10^{*} \sim 11^{*}$: empty; $12^{*} \sim 19^{*}$ are the programmable output terminal. The normal products without these terminals, but if the customer special ordered, the cost extra added.

3M type acquiescence output:
$12^{*}, 13^{\# \prime}$: Signal alarm of load 1 output; $14^{* \prime}, 15^{*}$: Signal alarm of load2 output
$16^{*}, 17^{\#}$: Self-diagnose alarm; 18",19*: Fault trip
20^{*} : PE line; $21^{*} \sim 24^{*}$: Display the voltage of the signal input. The normal products without these terminals,
if the customer special ordered the function meter, the cost extra added.
$21^{\prime \prime}$: N phase input terminal; $22^{*}, 23^{\#}, 24^{*}: A, B, C$ three phase power input terminal (note the sequence)(Highest-voltage of AC400V)
$25^{*}, 26^{*}$ Connect to the N phase current transformer or the input terminal of the current leakage transformer. The normal products without these terminals, if the customer special ordered, the cost extra added. $27^{*}, 28^{* *}$: Under-voltage release(Connected to the main circuit); $29^{* *}, 30^{* *}$: Shunt release
$31^{*}, 32^{*}$: Closing release; $33^{\prime \prime}, 34^{*}$: Energy storage indicator
$34^{*}, 35^{* *}$: Energy storage motor; $36^{*}, 37^{*}$: Under-voltage time delay release
$38^{*} \sim 51^{*}$: Auxiliary contact

Note:

a. Red colored part is to be connected by users
b. When the power system is three phase three wire, directly connect the Un to U 2 . (If the voltage exceeds 400 V , special explanation when ordered)

The auxiliary contact modes for customer use

$3^{*}, 4^{*}, 5^{*}$: Fault trip contact output(4 $4^{\#}$ common terminal)
$6^{* \prime}, 7^{\prime \prime}, 8^{\prime \prime}, 9^{*}$: Auxiliary contact (normal open)
$10^{*} \sim 11^{*}$: Communication output; $12^{*}, 13^{*}$: Signal alarm of load 1 output
$14^{*}, 15^{\#}$: Signal alarm of load 2 output; $16^{\#}, 17^{\#}$: Breaking signal output; $18^{*}, 19^{*}$: Closing signal output 20*: PE line; 21^{*} : N phase input terminal
$22^{*}, 23^{*}, 24^{*}: A, B, C$ three phase power input terminal (note the sequence)(highest-voltage of AC400V) $25^{*}, 26^{*}$ Connect to the N phase current transformer or the input terminal of the current leakage transformer. The normal products without these terminals, if the customer special ordered, the cost extra added. ST~DP: DP protocol module. There is no need for the ST-DP protocol module,
if the communication protocol is Modbus-RTV. But when the communication protocol is Profibus-DP, the ST-DP protocol module is necessary, but the cost extra added.
ST power module IV: power converter (optional components)
ST201: Magnify the signal capacity of the controller. (optional components)
If the customer special ordered, the cost extra added.
$27^{\#}, 28^{*}$: Under-voltage release(Connected to the main circuit); $29^{*}, 30^{*}$: Shunt release
$31^{\#}, 32^{\#}$: Closing release; 33",34": Energy storage indicator
$34^{*}, 35^{*}$: Energy storage motor; $36^{*}, 37^{*}$: Under-voltage time delay release
$38^{*} \sim 51^{\#}$: Auxiliary contact

Note:

a. Red colored part is to be connected by users
b. When the power system is three phase three wire, directly connect the Un to U2.
(If the voltage exceeds 400 V , special explanation when ordered)

7. Installation

7.1 Installation

7.1.1 Unload the breaker from the soleplate of package. If it is drawout type, firstly pull out the handle under the drawer-base of breaker, and plug it into the hole on central part of plastic cover under the drawer-base crossbeam, anticlockwise turns the handle, the body will slowly slide along the outside of drawer-base.

When the guide rod points to separated position and handle can't be rotated any longer, pull out the handle and firmly grasp the aluminum handle on drawer-base, pull out the breaker body and remove it form the base, then move the base from the sole plate and clean up the dirty things inside the drawer-base.

Possible positions

7.1.2 Check the insulation resistance with a 500 V megger, resistance should not be less than $20 \mathrm{M} \Omega$ when ambient temperature is $20^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ and relative humidity is $50 \% \sim 70 \%$. Otherwise dry it.
7.1.3 Power supply

NA1 devices can be supplied either from the top or from the bottom without reduction in performance, in order to facilitate connection when installed in a switchboard.

7.1.4 Put the breaker (fixed-type) or drawer-base (drawout-type) into the installation-bracket, and make it fixed, directly connect the cable wire of main circuit to the bus wire of fixed-type circuit breaker. Alternatively put breaker body onto the slideway of drawer-base. Plug the handle into installation hole, clockwise turns it until the under-part of drawer-base points at the connection position and "click" sound is heard. It indicates that breaker body has been connected to its place, then connect the cable of main circuit to drawer-base.

Mounting the circuit-breaker
It is important to distribute the weight of the device uniformly over a rigid mounting surface such as rails or a base plate.
This mounting plane should be perfectly flat (tolerance on support flatness: 2 mm). This eliminates any risk of deformation which could interfere with correct operation of the circuit breaker.
NA1 devices can also be mounted on a vertical plane using the special brackets.

7.1.5 Partitions

Sufficient openings must be provided in partitions to ensure good air circulation around the circuit breaker;
Any partition between upstream and downstream connections of the device must be made of nonmagnetic material. For high-currents, of 2500 A and upwards, the metal supports or barriers in the immediate vicinity of a conductor ;Metal barriers through which a conductor passes must not form a magnetic loop.

Busbars

The mechanical connection must be exclude the possibility of formation of a magnetic loop around a conductor.
7.1.6 Busbar connections

The busbars should be suitably adjusted to ensure the connection points are positioned on the terminals before the bolts B are inserted. The connections are held by the supporter which is fixed to the framework of the switchboard, in this way the circuit breaker terminals do not have to support its weight C.
(This support should be placed close to the terminals).

7.1.7 Main circuit adopts cable connection

Users should not apply too strong mechanical strength on the terminals of Air Circuit Breaker. Extend the bus-bar of circuit breaker with connecting bus-bar, position the wiring piece of cable before inserting bolts; the cable should be fixed on the frame of distributing cabinet firmly.

7.1.8 Clamping

Correct clamping of busbars depends on the tightening torques used for the nuts and bolts,etc. Over-tightening may have the same consequences as under-tightening.

For connecting busbars to the circuit breaker, the tightening torques to be used are shown in the table below. These values are for use with copper busbars and steel nuts and bolts, class ≥ 8.8.

Examples

Preferred tightening torque for NA1's tightening components

Type of screw	Application	Preferred tightening torque
M3	Screws for secondary terminals	$0.4 \sim 0.5 \mathrm{~N} \cdot \mathrm{~m}$
M10	Installing bolts of Air Circuit Breaker	$38 \sim 55 \mathrm{~N} \cdot \mathrm{~m}$
M12	Connection terminals	$61 \sim 94 \mathrm{~N} \cdot \mathrm{~m}$

7.2 Wiring the secondary circuit according to electric principle diagram.
Note: Bolts, nuts, gaskets shouldn't be left inside the drawer seat to avoid being blocked.
7.3 Operation

Check the rated voltage of the following components whether conforms to the power voltage. Such as under voltage release, shunt release, closing electromagnet, motor-driven mechanism and intelligent controller.
7.4 Maintenance

Check the technical parameters in time or add some lubricating oil, etc.
This breaker structure is arranged vertically and modularized composition with each functioncell separated, which make the maintenance easy.
It has compact structure, reliable operation and strong free maintenance capability. Please check the technical parameters on the nameplate in accordance with the requirements of order before installation.

Making the secondary circuit power, the motor-driven mechanism can store energy automatically until hearing the click and energy stored indicating on the panel.

Otherwise press the storage handle for 6 times until hearing the click and the indicator display energy stored

And the closing operation can be realized either by closing electromagnet or manual button.

8. Recommendation for user's connecting bus-bar

$\begin{aligned} & \hline \operatorname{Inm}(A) \\ & \hline \operatorname{In}(\mathrm{A}) \end{aligned}$		NA1-1000X					NA1-2000X/NA1-2000XN/NA1-2000xH						NA1-3200x/NA1-3200xN			NA1-4000x		NA1-6300xNA1-6300x		
		200	400	630	800	1000	630	800	1000	1250	1600	2000	2000	2500	3200	4000/3P	4000/4P	4000	5000	6300
Busbar	Thickness(mm)	5	5	5	6	8	5	6	8	10	12	10	8	10	10	10	-	10	10	10
	Width(mm)	30	30	40	50	50	60	60	60	60	60	60	100	100	100	120	-	100	100	100
	Number	1	2	2	2	2	2	2	2	2	2	3	2	2	4	4	-	5	7	8

Note: the specifications in the table is obtained as the ambient temperature of air circuit breaker is $40^{\circ} \mathrm{C}$, with open installation; this is in compliance with the specification of copper busbars adopted under the heating conditions regulated in IEC/EN60947-2.

9. Power loss

$\operatorname{Inm}(\mathrm{A})$		NA1-1000X					NA1-2000X/NA1-2000XN/NA1-2000XH						NA1-3200X/NA1-3200xN			NA1-4000X		NA1-6300X/NA1-6300xN		
In(A)		200	400	630	800	1000	630	800	1000	1250	1600	2000	2000	2500	3200	4000/3P	4000/4P	4000	5000	6300
Power loss (W)	Drawer type	40	101	123	110	171	70	110	172	268	440	530	384	600	737	921	-	575	898	1426
	Fixed type	33	85	107	94	146	34.4	50	78	122	200	262	200	312	307	450	-	-	-	-

10. $A^{2} S$ curve

Is: prospective symmetrical current(of an a.c. circuit)

11. Temperature compensation correction

Standard	Ambient temperature	NA1-1000X					NA1-2000X/NA1-2000XN/NA1-2000XH						$\begin{aligned} & \text { NA1-3200X/NA1-3200XN } \\ & \text { NA1-4000X } \end{aligned}$				NA1-6300X/ NA1-6300XN		
	$40^{\circ} \mathrm{C}$	200	400	630	800	1000	630	800	1000	1250	1600	2000	2000	2500	3200	4000	4000	5000	6300
	$45^{\circ} \mathrm{C}$	200	395	623	800	985	630	800	1000	1250	1600	2000	2000	2500	3200	3800	4000	5000	6000
	$50^{\circ} \mathrm{C}$	200	384	605	800	960	630	800	1000	1250	1600	2000	2000	2500	3200	3600	4000	5000	5600
IEC/EN60947-2	$55^{\circ} \mathrm{C}$	200	328	584	800	924	630	800	1000	1250	1500	1900	2000	2300	3000	3400	4000	4800	5400
	$60^{\circ} \mathrm{C}$	200	248	548	800	870	610	800	1000	1250	1300	1800	2000	2200	2800	3200	4000	4800	5200
	$65^{\circ} \mathrm{C}$	192	192	500	800	810	610	800	1000	1250	1300	1650	2000	2200	2600	3000	4000	4600	5100
	$70^{\circ} \mathrm{C}$	170	170	473	750	750	473	800	1000	1200	1200	1400	2000	2000	2200	2520	4000	4000	4200

Note: The ACB is to calibrated at $40^{\circ} \mathrm{C}$, special application please refer to the table above and the curve below.

12. Coordination recommendations

Capacity of transformer (kVA) \& parallelly connected number	Rated current of transformer $\operatorname{In}(A)$	Short circuit current of main circuit (kA)	Breaking capacity of air circuit breaker for main circuit (kA)
$\begin{aligned} & 1 \times 250 \\ & 2 \times 250 \\ & 3 \times 250 \end{aligned}$	$\begin{aligned} & 360 \\ & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & \hline 9 \\ & 9 \\ & 9 \end{aligned}$	9 9 18.5
$\begin{aligned} & 1 \times 315 \\ & 2 \times 315 \\ & 3 \times 315 \end{aligned}$	$\begin{array}{\|l} 455 \\ 455 \\ 455 \end{array}$	$\begin{aligned} & 11.4 \\ & 11.4 \\ & 11.4 \end{aligned}$	$\begin{aligned} & 11.4 \\ & 11.4 \\ & 22.7 \end{aligned}$
$\begin{aligned} & 1 \times 400 \\ & 2 \times 400 \\ & 3 \times 400 \end{aligned}$	$\begin{aligned} & 578 \\ & 578 \\ & 578 \end{aligned}$	$\begin{aligned} & 14.4 \\ & 14.4 \\ & 14.4 \end{aligned}$	$\begin{aligned} & 14.4 \\ & 14.4 \\ & 28.8 \end{aligned}$
$\begin{aligned} & 1 \times 500 \\ & 2 \times 500 \\ & 3 \times 500 \end{aligned}$	$\begin{aligned} & 722 \\ & 722 \\ & 722 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 18 \end{aligned}$	18 18 36.1
$\begin{aligned} & 1 \times 630 \\ & 2 \times 630 \\ & 3 \times 630 \end{aligned}$	$\begin{aligned} & 910 \\ & 910 \\ & 910 \end{aligned}$	$\begin{aligned} & 22.7 \\ & 22.7 \\ & 22.7 \end{aligned}$	$\begin{aligned} & 22.7 \\ & 22.7 \\ & 44.5 \end{aligned}$
$\begin{aligned} & 1 \times 800 \\ & 2 \times 800 \\ & 3 \times 800 \end{aligned}$	$\begin{aligned} & 1154 \\ & 1154 \\ & 1154 \end{aligned}$	$\begin{aligned} & 19.3 \\ & 19.3 \\ & 19.3 \end{aligned}$	$\begin{aligned} & 19.3 \\ & 19.3 \\ & 38.5 \end{aligned}$
$\begin{aligned} & 1 \times 1000 \\ & 2 \times 1000 \\ & 3 \times 1000 \end{aligned}$	$\begin{aligned} & 1444 \\ & 1444 \\ & 1444 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \\ & 24 \end{aligned}$	24 24 48.1
$\begin{aligned} & 1 \times 1250 \\ & 2 \times 1250 \\ & 3 \times 1250 \end{aligned}$	$\begin{aligned} & 1805 \\ & 1805 \\ & 1805 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{\|l\|} \hline 30 \\ 30 \\ 60.1 \end{array}$
$\begin{aligned} & 1 \times 1600 \\ & 2 \times 1600 \\ & 3 \times 1600 \end{aligned}$	$\begin{aligned} & 2310 \\ & 2310 \\ & 2310 \end{aligned}$	$\begin{aligned} & 36.5 \\ & 36.5 \\ & 36.5 \end{aligned}$	$\begin{aligned} & 36.5 \\ & 36.5 \\ & 73 \end{aligned}$
$\begin{aligned} & 1 \times 2000 \\ & 2 \times 2000 \\ & 3 \times 2000 \end{aligned}$	$\begin{aligned} & 2887 \\ & 2887 \\ & 2887 \end{aligned}$	$\begin{aligned} & 48.2 \\ & 48.2 \\ & 48.2 \end{aligned}$	$\begin{aligned} & 48.2 \\ & 48.2 \\ & 96.3 \end{aligned}$
$\begin{aligned} & 1 \times 2500 \\ & 2 \times 2500 \end{aligned}$	$\begin{aligned} & 3608 \\ & 3608 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$
$\begin{aligned} & 1 \times 3150 \\ & 2 \times 3150 \end{aligned}$	$\begin{aligned} & 4550 \\ & 4550 \end{aligned}$	$\begin{aligned} & 75.8 \\ & 75.8 \end{aligned}$	$\begin{aligned} & 75.8 \\ & 75.8 \end{aligned}$

Type of air circuit breaker for main circuit	Number and area of the busbar for main circuit $(n \times W \times T)$	Breaking capacity of air circuit breaker for branch circuit (kA)	Air circuit breaker for branch circuit
NA1-1000X-400	$2 \times(5 \times 30)$	9	NA1, NM8
NA1-1000X-400		18.5	
NA1-1000X-400		27.5	
NA1-1000X-630	$2 \times(5 \times 40)$	11.4	NA1, NM8
NA1-1000X-630		22.7	
NA1-1000X-630		34.1	
NA1-1000X-630	$2 \times(5 \times 40)$	14.4	NA1, NM8
NA1-1000X-630		28.8	
NA1-1000X-630		43.2	
NA1-1000X-800	$2 \times(6 \times 50)$	18	NA1, NM8
NA1-1000X-800		36.1	
NA1-1000X-800		54.1	
NA1-1000X-1000	$2 \times(8 \times 50)$	22.7	NA1, NM8
NA1-1000X-1000		44.5	
NA1-2000X-1000		67.2	
NA1-2000X-1250	$2 \times(10 \times 60)$	19.3	NA1, NM8
NA1-2000X-1250		38.5	
NA1-2000X-1250		57.8	
NA1-2000X-1600	$2 \times(12 \times 60)$	24	NA1, NM8
NA1-2000X-1600		48.1	
NA1-2000X-1600		72.1	
NA1-2000X-2000	$3 \times(10 \times 60)$	30	NA1, NM8
NA1-2000X-2000		60.1	
NA1-2000X-2000		90.1	
NA1-3200X-2500	$2 \times(10 \times 100)$	36.5	NA1, NM8
NA1-3200X-2500		73	
NA1-3200X-2500		109.5	
NA1-3200X-3200	$4 \times(10 \times 100)$	48.2	NA1, NM8
NA1-3200X-3200		96.3	
NA1-3200X-3200		144.5	
NA1-6300X-4000	$4 \times(10 \times 120)$	60	NA1, NM8
NA1-6300X-4000			
NA1-6300X-5000	$7 \times(10 \times 100)$	75.8	NA1, NM8
NA1-6300X-5000		151.6	

13. Selectivity protection

13.1 Selective protection between NM8 and NA1

		NA1-3200X/NA1-3200XN			NA1-4000X 4000	NA1-6300X/NA1-6300XN		
1600	2000	2000	2500	3200		4000	5000	6300
12.8	16	16	20	25.6	32	32	40	50.4
1.6~24	2~30	2~30	$2.5 \sim 37.7$	3.2~48	4~60	4~60	5~75	6.3~94.5
$0.1,0.2,0.3,0.4$								
$0.06,0.14,0.23,0.35$								
$\begin{aligned} & 1.6 \sim 24 \\ & 1.6 \sim 24 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2.5 \sim 37.7 \\ & 2.5 \sim 37.7 \end{aligned}$	$\begin{aligned} & 3.2 \sim 48 \\ & 3.2 \sim 48 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 5 \sim 75 \\ & 5 \sim 75 \end{aligned}$	$\begin{aligned} & 6.3 \sim 94.5 \\ & 6.3 \sim 94.5 \end{aligned}$
$\begin{aligned} & 1.6 \sim 24 \\ & 1.6 \sim 24 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2.5 \sim 37.7 \\ & 2.5 \sim 37.7 \end{aligned}$	$\begin{aligned} & 3.2 \sim 48 \\ & 3.2 \sim 48 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 5 \sim 75 \\ & 5 \sim 75 \end{aligned}$	$\begin{aligned} & 6.3 \sim 94.5 \\ & 6.3 \sim 94.5 \end{aligned}$
$\begin{aligned} & 1.6 \sim 24 \\ & 1.6 \sim 24 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2.5 \sim 37.7 \\ & 2.5 \sim 37.7 \end{aligned}$	$\begin{aligned} & 3.2 \sim 48 \\ & 3.2 \sim 48 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 5 \sim 75 \\ & 5 \sim 75 \end{aligned}$	$\begin{aligned} & 6.3 \sim 94.5 \\ & 6.3 \sim 94.5 \end{aligned}$
$\begin{aligned} & 1.6 \sim 24 \\ & 1.6 \sim 24 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2.5 \sim 37.7 \\ & 2.5 \sim 37.7 \end{aligned}$	$\begin{aligned} & 3.2 \sim 48 \\ & 3.2 \sim 48 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 5 \sim 75 \\ & 5 \sim 75 \end{aligned}$	$\begin{aligned} & 6.3 \sim 94.5 \\ & 6.3 \sim 94.5 \end{aligned}$
$\begin{aligned} & 1.6 \sim 24 \\ & 1.6 \sim 24 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2.5 \sim 37.7 \\ & 2.5 \sim 37.7 \end{aligned}$	$\begin{aligned} & 3.2 \sim 48 \\ & 3.2 \sim 48 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 5 \sim 75 \\ & 5 \sim 75 \end{aligned}$	$\begin{aligned} & 6.3 \sim 94.5 \\ & 6.3 \sim 94.5 \end{aligned}$
$\begin{aligned} & 1.6 \sim 24 \\ & 1.6 \sim 24 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2.5 \sim 37.7 \\ & 2.5 \sim 37.7 \end{aligned}$	$\begin{aligned} & 3.2 \sim 48 \\ & 3.2 \sim 48 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 5 \sim 75 \\ & 5 \sim 75 \end{aligned}$	$\begin{aligned} & 6.3 \sim 94.5 \\ & 6.3 \sim 94.5 \end{aligned}$
$\begin{aligned} & 1.6 \sim 24 \\ & 1.6 \sim 24 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2.5 \sim 37.7 \\ & 2.5 \sim 37.7 \end{aligned}$	$\begin{aligned} & 3.2 \sim 48 \\ & 3.2 \sim 48 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 5 \sim 75 \\ & 5 \sim 75 \end{aligned}$	$\begin{aligned} & 6.3 \sim 94.5 \\ & 6.3 \sim 94.5 \end{aligned}$
$\begin{aligned} & 1.6 \sim 24 \\ & 1.6 \sim 24 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2.5 \sim 37.7 \\ & 2.5 \sim 37.7 \end{aligned}$	$\begin{aligned} & 3.2 \sim 48 \\ & 3.2 \sim 48 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 5 \sim 75 \\ & 5 \sim 75 \end{aligned}$	$\begin{aligned} & 6.3 \sim 94.5 \\ & 6.3 \sim 94.5 \end{aligned}$
$\begin{aligned} & 1.6 \sim 24 \\ & 1.656 \sim 24 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2.5 \sim 37.7 \\ & 2.5 \sim 37.7 \end{aligned}$	$\begin{aligned} & 3.2 \sim 48 \\ & 3.2 \sim 48 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 5 \sim 75 \\ & 5 \sim 75 \end{aligned}$	$\begin{aligned} & 6.3 \sim 94.5 \\ & 6.3 \sim 94.5 \end{aligned}$
$\begin{aligned} & 1.725 \sim 24 \\ & 2.07 \sim 24 \end{aligned}$	$\begin{aligned} & \text { 1.725~30 } \\ & \text { 2.07~30 } \end{aligned}$	$\begin{aligned} & \text { 1.725~30 } \\ & 2.07 \sim 30 \end{aligned}$	$\begin{aligned} & 1.725 \sim 37.7 \\ & 2.07 \sim 37.7 \end{aligned}$	$\begin{aligned} & 1.725 \sim 48 \\ & 2.07 \sim 48 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.725 \sim 60 \\ 2.07 \sim 60 \end{array}$	$\begin{aligned} & 1.725 \sim 60 \\ & 2.07 \sim 60 \end{aligned}$	$\begin{aligned} & 1.725 \sim 75 \\ & \text { 2.07~75 } \end{aligned}$	$\begin{aligned} & 1.725 \sim 94.5 \\ & 2.07 \sim 94.5 \end{aligned}$
$\begin{aligned} & 1.6 \sim 24 \\ & 1.656 \sim 24 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2 \sim 30 \\ & 2 \sim 30 \end{aligned}$	$\begin{aligned} & 2.5 \sim 37.7 \\ & 2.5 \sim 37.7 \end{aligned}$	$\begin{aligned} & 3.2 \sim 48 \\ & 3.2 \sim 48 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 5 \sim 75 \\ & 5 \sim 75 \end{aligned}$	$\begin{aligned} & 6.3 \sim 94.5 \\ & 6.3 \sim 94.5 \end{aligned}$
$\begin{aligned} & 2.208 \sim 24 \\ & 2.65 \sim 24 \end{aligned}$	$\begin{aligned} & 2.208 \sim 30 \\ & 2.65 \sim 30 \end{aligned}$	$\begin{aligned} & 2.208 ~ 30 \\ & 2.65 \sim 30 \end{aligned}$	$\begin{aligned} & 2.5 \sim 37.7 \\ & 2.65 \sim 37.7 \end{aligned}$	$\begin{aligned} & 3.2 \sim 48 \\ & 3.2 \sim 48 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 5 \sim 75 \\ & 5 \sim 75 \end{aligned}$	$\begin{aligned} & 6.3 \sim 94.5 \\ & 6.3 \sim 94.5 \end{aligned}$
$\begin{aligned} & 2.76 \sim 24 \\ & 3.312 \sim 24 \end{aligned}$	$\begin{aligned} & 2.76 \sim 30 \\ & 3.312 \sim 30 \end{aligned}$	$\begin{aligned} & 2.76 \sim 30 \\ & 3.312 \sim 30 \end{aligned}$	$\begin{aligned} & 2.76 \sim 37.7 \\ & 3.312 \sim 37.7 \end{aligned}$	$\begin{aligned} & 3.2 \sim 48 \\ & 3.312 \sim 48 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4 \sim 60 \end{aligned}$	$\begin{aligned} & 5 \sim 75 \\ & 5 \sim 75 \end{aligned}$	$\begin{aligned} & 6.3 \sim 94.5 \\ & 6.3 \sim 94.5 \end{aligned}$
$\begin{aligned} & 3.45 \sim 24 \\ & 4.14 \sim 24 \end{aligned}$	$\begin{aligned} & 3.45 \sim 30 \\ & 4.14 \sim 30 \end{aligned}$	$\begin{aligned} & 3.45 \sim 30 \\ & 4.14 \sim 30 \end{aligned}$	$\begin{aligned} & 3.45 \sim 37.7 \\ & 4.14 \sim 37.7 \end{aligned}$	$\begin{aligned} & 3.45 \sim 48 \\ & 4.14 \sim 48 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4.14 \sim 60 \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4.14 \sim 60 \end{aligned}$	$\begin{aligned} & 5 \sim 75 \\ & 5 \sim 75 \end{aligned}$	$\begin{aligned} & 6.3 \sim 94.5 \\ & 6.3 \sim 94.5 \end{aligned}$

		NA1-3200X/NA1-3200XN			NA1-4000x	NA1-6300X/NA1-6300XN		
1600	2000	2000	2500	3200	4000	4000	5000	6300
12.8	16	16	20	25.6	32	32	40	50.4
1.6~24	2~30	2~30	$2.5 \sim 37.7$	3.2~48	4~60	4~60	5~75	$6.3 \sim 94.5$
$0.1,0.2,0.3,0.4$								
$0.06,0.14,0.23,0.35$								
$\begin{aligned} & 3.45 \sim 24 \\ & 4.14 \sim 24 \end{aligned}$	$\begin{aligned} & 3.45 \sim 30 \\ & 4.14 \sim 30 \end{aligned}$	$\begin{aligned} & 3.45 \sim 30 \\ & 4.14 \sim 30 \end{aligned}$	$\begin{aligned} & 3.45 \sim 37.7 \\ & 4.14 \sim 37.7 \end{aligned}$	$\begin{aligned} & 3.45 \sim 48 \\ & 4.14 \sim 48 \end{aligned}$	$\begin{aligned} & \text { 4~60 } \\ & \text { 4.14~60 } \end{aligned}$	$\begin{aligned} & 4 \sim 60 \\ & 4.14 \sim 60 \end{aligned}$	$\begin{aligned} & 5 \sim 75 \\ & 5 \sim 75 \end{aligned}$	$\begin{aligned} & 6.3 \sim 94.5 \\ & 6.3 \sim 94.5 \end{aligned}$
$\begin{aligned} & 4.347 \sim 24 \\ & 5.216 \sim 24 \end{aligned}$	$\begin{aligned} & 4.347 \sim 30 \\ & 5.216 \sim 30 \end{aligned}$	$\begin{aligned} & 4.347 \sim 30 \\ & 5.216 \sim 30 \end{aligned}$	$\begin{aligned} & 4.347 \sim 37.7 \\ & 5.216 \sim 37.7 \end{aligned}$	$\begin{aligned} & 4.347 \sim 48 \\ & 5.216 \sim 48 \end{aligned}$	$\begin{aligned} & 4.347 \sim 60 \\ & 5.216 \sim 60 \end{aligned}$	$\begin{aligned} & 4.347 \sim 60 \\ & 5.216 \sim 60 \end{aligned}$	$\begin{aligned} & 5 \sim 75 \\ & 5.216 \sim 75 \end{aligned}$	$\begin{aligned} & \text { 6.3~94.5 } \\ & 6.3 \sim 94.5 \end{aligned}$
$\begin{aligned} & 4.83 \sim 24 \\ & 5.796 \sim 24 \end{aligned}$	$\begin{aligned} & 4.83 \sim 30 \\ & 5.796 \sim 30 \end{aligned}$	$\begin{aligned} & 4.83 \sim 30 \\ & 5.796 \sim 30 \end{aligned}$	$\begin{aligned} & 4.83 \sim 37.7 \\ & 5.796 \sim 37.7 \end{aligned}$	$\begin{aligned} & 4.83 \sim 48 \\ & 5.796 \sim 48 \end{aligned}$	$\begin{aligned} & 4.83 \sim 60 \\ & 5.796 \sim 60 \end{aligned}$	$\begin{aligned} & 4.83 ~ 60 \\ & 5.796 \sim 60 \end{aligned}$	$\begin{aligned} & 5 \sim 75 \\ & 5.796 \sim 75 \end{aligned}$	$\begin{aligned} & 6.3 \sim 94.5 \\ & 6.3 \sim 94.5 \end{aligned}$
$\begin{aligned} & 5.52 \sim 24 \\ & 6.624 \sim 24 \end{aligned}$	$\begin{aligned} & 5.52 ~ 30 \\ & 6.624 \sim 30 \end{aligned}$	$\begin{aligned} & 5.52 ~ 30 \\ & 6.624 \sim 30 \end{aligned}$	$\begin{aligned} & 5.52 \sim 37.7 \\ & 6.624 \sim 37.7 \end{aligned}$	$\begin{aligned} & 5.52 \sim 48 \\ & 6.624 \sim 48 \end{aligned}$	$\begin{aligned} & 5.52 \sim 60 \\ & 6.624 \sim 60 \end{aligned}$	$\begin{aligned} & 5.52 \sim 60 \\ & 6.624 \sim 60 \end{aligned}$	$\begin{aligned} & 5.52 \sim 75 \\ & 6.624 \sim 75 \end{aligned}$	$\begin{aligned} & \text { 6.3~94.5 } \\ & \text { 6.624~94.5 } \end{aligned}$
$\begin{aligned} & 6.9 \sim 24 \\ & 8.28 \sim 24 \end{aligned}$	$\begin{aligned} & 6.9 ~ 30 \\ & 8.28 \sim 30 \end{aligned}$	$\begin{aligned} & 6.9 \sim 30 \\ & 8.28 \sim 30 \end{aligned}$	$\begin{aligned} & 6.9 \sim 37.7 \\ & 8.28 \sim 37.7 \end{aligned}$	$\begin{aligned} & 6.9 \sim 48 \\ & 8.28 \sim 48 \end{aligned}$	$\begin{aligned} & 6.9 \sim 60 \\ & 8.28 \sim 60 \end{aligned}$	$\begin{aligned} & 6.9 \sim 60 \\ & 8.28 \sim 60 \end{aligned}$	$\begin{aligned} & 6.9 \sim 75 \\ & 8.28 \sim 75 \end{aligned}$	$\begin{aligned} & 6.9 ~ 94.5 \\ & 8.28 \sim 94.5 \end{aligned}$
$\begin{aligned} & 8.694 \sim 24 \\ & 10.44 \sim 24 \end{aligned}$	$\begin{aligned} & 8.694 ~ 30 \\ & 10.44 ~ 30 \end{aligned}$	$\begin{aligned} & 8.694 ~ 30 \\ & 10.44 \sim 30 \end{aligned}$	$\begin{aligned} & 8.694 \sim 37.7 \\ & 10.44 \sim 37.7 \end{aligned}$	$\begin{aligned} & 8.694 ~ 48 \\ & 10.44 \sim 48 \end{aligned}$	$\begin{aligned} & 8.694 \sim 60 \\ & 10.44 \sim 60 \end{aligned}$	$\begin{aligned} & 8.694 \sim 60 \\ & 10.44 \sim 60 \end{aligned}$	$\begin{aligned} & 8.694 ~ 75 \\ & 10.44 \sim 75 \end{aligned}$	$\begin{aligned} & 8.694 ~ 94.5 \\ & 10.44 \sim 94.5 \end{aligned}$
$\begin{aligned} & \text { 8.694~24 } \\ & \text { 10.44~24 } \end{aligned}$	$\begin{aligned} & 8.694 ~ 30 \\ & 10.44 \sim 30 \end{aligned}$	$\begin{aligned} & 8.694 ~ 30 \\ & 10.44 \sim 30 \end{aligned}$	$\begin{aligned} & 8.694 \sim 37.7 \\ & 10.44 \sim 37.7 \end{aligned}$	$\begin{aligned} & \text { 8.694~48 } \\ & 10.44 \sim 48 \end{aligned}$	$\begin{aligned} & \text { 8.694~60 } \\ & \text { 10.44~60 } \end{aligned}$	$\begin{aligned} & 8.694 ~ 60 \\ & 10.44 \sim 60 \end{aligned}$	$\begin{aligned} & 8.694 \sim 75 \\ & 10.44 \sim 75 \end{aligned}$	$\begin{aligned} & 8.694 ~ 94.5 \\ & 10.44 \sim 94.5 \end{aligned}$
$\begin{aligned} & 9.66 \sim 24 \\ & 11.59 \sim 24 \end{aligned}$	$\begin{aligned} & 9.66 ~ 30 \\ & 11.59 \sim 30 \end{aligned}$	$\begin{aligned} & 9.66 ~ 30 \\ & 11.59 \sim 30 \end{aligned}$	$\begin{aligned} & 9.66 \sim 37.7 \\ & 11.59 \sim 37.7 \end{aligned}$	$\begin{aligned} & 9.66 \sim 48 \\ & 11.59 \sim 48 \end{aligned}$	$\begin{aligned} & 9.66 \sim 60 \\ & 11.59 \sim 60 \end{aligned}$	$\begin{aligned} & 9.66 ~ 60 \\ & \text { 11.59~60 } \end{aligned}$	$\begin{aligned} & 9.66 \sim 75 \\ & 11.59 \sim 75 \end{aligned}$	$\begin{aligned} & 9.66 ~ 94.5 \\ & 11.59 \sim 94.5 \end{aligned}$
$\begin{aligned} & 11.04 \sim 24 \\ & 13.25 \sim 24 \end{aligned}$	$\begin{aligned} & 11.04 ~ 30 \\ & 13.25 \sim 30 \end{aligned}$	$\begin{aligned} & 11.04 \sim 30 \\ & 13.25 \sim 30 \end{aligned}$	$\begin{aligned} & 11.04 \sim 37.7 \\ & 13.25 \sim 37.7 \end{aligned}$	$\begin{aligned} & 11.04 \sim 48 \\ & 13.25 \sim 48 \end{aligned}$	$\begin{aligned} & 11.04 \sim 60 \\ & 13.25 \sim 60 \end{aligned}$	$\begin{aligned} & 11.04 \sim 60 \\ & 13.25 \sim 60 \end{aligned}$	$\begin{aligned} & 11.04 \sim 75 \\ & 13.25 \sim 75 \end{aligned}$	$\begin{aligned} & 11.04 \sim 94.5 \\ & 13.25 \sim 94.5 \end{aligned}$
$\begin{aligned} & 13.8 \sim 24 \\ & 16.56 \sim 24 \end{aligned}$	$\begin{aligned} & 13.8 ~ 30 \\ & 16.56 \sim 30 \end{aligned}$	$\begin{aligned} & 13.8 ~ 30 \\ & 16.56 \sim 30 \end{aligned}$	$\begin{aligned} & 13.8 \sim 37.7 \\ & 16.56 \sim 37.7 \end{aligned}$	$\begin{aligned} & 13.8 \sim 48 \\ & 16.56 \sim 48 \end{aligned}$	$\begin{aligned} & 13.8 \sim 60 \\ & 16.56 \sim 60 \end{aligned}$	$\begin{aligned} & 13.8 ~ 60 \\ & 16.56 \sim 60 \end{aligned}$	$\begin{aligned} & 13.8 \sim 75 \\ & 16.56 \sim 75 \end{aligned}$	$\begin{aligned} & 13.8 \sim 94.5 \\ & 16.56 \sim 94.5 \end{aligned}$
$\begin{aligned} & 17.25 \sim 24 \\ & 20.7 \sim 24 \end{aligned}$	$\begin{aligned} & 17.25 \sim 30 \\ & 20.7 \sim 30 \end{aligned}$	$\begin{aligned} & 17.25 \sim 30 \\ & 20.7 \sim 30 \end{aligned}$	$\begin{aligned} & 17.25 \sim 37.7 \\ & 20.7 \sim 37.7 \end{aligned}$	$\begin{aligned} & 17.25 \sim 48 \\ & 20.7 \sim 48 \end{aligned}$	$\begin{aligned} & 17.25 \sim 60 \\ & 20.7 \sim 60 \end{aligned}$	$\begin{aligned} & \text { 17.25~60 } \\ & \text { 20.7~60 } \end{aligned}$	$\begin{aligned} & 17.25 \sim 75 \\ & 20.7 \sim 75 \end{aligned}$	$\begin{aligned} & 17.25 \sim 94.5 \\ & \text { 20.7~94.5 } \end{aligned}$

13.2 Selective protection in NA1

				Circuit breaker	NA1-2000X/	-2000XN/	2000XH		
Downstream			Upstream	Rated current (A)	630	800	1000	1250	
			Default setting ratings of short time-delay 8In (kA)	5.04	6.4	8	10		
			Setting range (kA)	0.63 ~ 9.45	0.8~12	1~15	1.25~18.75		
			Delayed tripping time (s)	$0.1,0.2,0.3,0.4$					
			Returnable time	$0.06,0.14,0.23,0.35$					
Frame size rated current	Rated current (A)	Default instantaneous setting ratings 12In (kA)							
NA1-2000X	400	4.8				6.348~9.45	6.348~12	6.348~15	$6.348 \sim 18.75$
	630	7.56					9.998~12	9.998~15	$9.998 \sim 18.75$
	800	9.6						12.696~15	12.696~18.75
	1000	12						15.87~18.75	
	1250	15							
	1600	19.2							
	2000	24							
NA1-3200X	2000	24							
	2500	30							
	3200	38.4							
NA1-4000X	3200	38.4							
	4000	48							
	4000	48							
NA1-6300X	5000	60							
	6300	75							

Note: It can satisfy the selective protection if only the short time-delay setting value of the superior breaker 1.32 times more than the subordinate breaker, when the instantaneous setting value is adjustive.

		NA1-3200X/NA1-3200XN			NA1-4000x	NA1-6300X/NA1-6300XN		
1600	2000	2000	2500	3200	4000	4000	5000	6300
12.8	16	16	20	25.6	32	32	40	50.4
1.6~24	2~30	2~30	$2.5 \sim 37.7$	3.2~48	4~60	4~60	5~75	6.3~94.5
$0.1,0.2,0.3,0.4$								

$0.06,0.14,0.23,0.35$

$6.348 \sim 24$	$6.348 \sim 30$	6.348~30	$6.348 \sim 37.7$	6.348~48	6.348~60	6.348~60	$6.348 \sim 75$	$6.348 \sim 94.5$
9.998~24	$9.998 \sim 30$	9.998~30	$9.998 \sim 37.7$	$9.998 \sim 48$	9.998~60	9.998~60	$9.998 \sim 75$	9.998~94.5
12.696~24	12.696~30	12.696~30	12.696~37.7	12.696~48	12.696~60	12.696~60	12.696~75	12.696~94.5
15.87~24	15.87~30	15.87~30	15.87~37.7	15.87~48	15.87~60	15.87~60	15.87~75	15.87~94.5
19.837~24	19.837~30	19.837~30	19.837~37.7	19.837~48	19.837~60	19.837~60	19.837~75	19.837~94.5
	25.392~30	25.392~30	25.392~37.7	25.392~48	25.392~60	25.392~60	25.392~75	25.392~94.5
			31.74~37.7	31.74~48	31.74~60	31.74~60	31.74~75	31.74~94.5
			31.74~37.7	31.74~48	31.74~60	31.74~60	31.74~75	31.74~94.5
				39.675~48	39.675~60	39.675~60	39.675~75	39.675~94.5
					50.784~60	50.784~60	50.784~75	50.784~94.5
					50.784~60	50.784~60	50.784~75	50.784~94.5
							$63.48 \sim 75$	63.48~94.5
							$63.48 \sim 75$	63.48~94.5
								79.35~94.5

Intelligent Controller of NA1 series

14 Protection Features of intelligent controller

14.1 M/H and $3 \mathrm{M} / 3 \mathrm{H}$ intelligent controller UI

M/H control

1. Display window

Display current value, setting value, tripping time and so on
(2) "Set"

Switch to setting menu
(3) "Up"

Change the marquee or the selected parameter
4. "Return"

Escape from this grade and return to upper menu or cancel the current selected parameter
Enter into the next menu directed by the current item, or select current parameter and store modifications
6 "Down"
Change the marquee or the selected parameter

$3 \mathrm{M} / 3 \mathrm{H}$ control
"Check"
Switch to query menu
"Ir" light
Overload long delay fault indication
(9) "Isd" light

Short-circuit Short delay indication
(10) "Test"

Trip test button
(11) "Ii" light

Short-circuit instantaneous fault indication

"Ig" light

Asymmetric earthing or neutral line fault indication
(13) Alarm light
14) Communication light

Run light

Note: Method of $3 \mathrm{M} / 3 \mathrm{H}$ controller application please refer to $3 \mathrm{M} / 3 \mathrm{H}$ controller instruction.
$14.23 \mathrm{M} / 3 \mathrm{H}$ controller default interface and menu structure $3 \mathrm{M} / 3 \mathrm{H}$ controller has four subjects menus and a default interface:
The subjects menus are composed of 4 parts: measurement menu, parameter set menu, protection parameter set menu, history and maintenance menu.
$3 \mathrm{M} / 3 \mathrm{H}$ controller default interface

14.3 Explanation of M / H controller symbols
14.3.1 Explanation of symbols for reference

No.	symbol	explanation
1	$\mathrm{Ir}=\mathrm{tr}=$	Long delay current setting, long delay time setting
2	Isd= $\mathrm{tsd}=$	Short delay current setting, short delay time setting
3	$\mathrm{Ig}=\mathrm{tg}=$	Earthing current setting, earthing time setting
4	$\mathrm{Ii}=$	Instantaneous current setting
5	$\mathrm{N}=$	Neutral line protection parameter setting
6	TM	Trip simulated by software
7	TRIP	Tripped
8	RUN	Run normally
9	SET	Normally on: in settable state; Flickering: modifiable parameter
10	LIN	Storing state
11	PYO	Protection setting interface
12	「ES	Trip simulated by software setting interface
13	RLR	Alarm setting or query interface
14	SYS	System setting interface (current calibration, frequency setting ...)
15	DBS	Communication setting interface of H -type controller
16	DOS	DO setting interface (H type with DO function)
17	FRU	Fault record query interface
18	COU	Operation times and life query interface
19	HDT	Thermal capacity query interface
20	DOC	DO state query interface
21	H	Thermal capacity data
22	F--	Fault record number
23	R--	Alarm record number
24	Lg L1 L2 L3 LN	Earthing , A, B, C, N phase
25	4ζ	The corresponding LED lamp will flash to indicate the fault type after tripping. The LED lamps are always on when the system is normal.

14.3.2 Operation and display instruction

There are four states, default state, setting state, query state and tripping state.
(1) Default state: default state is also called measuring state. All fault indicating lamps are off and maximum phase current is displayed. In this state, if " $\boldsymbol{\Delta}$ " or " $\boldsymbol{\nabla}$ " button is pressed, L1,L2,L3(LN),Lg current can be displayed in turn. Example is shown below:

[^1](2)Setting state: press "Set" button in default interface to enter into setting interface. Current protection parameters, overload pre-alarm value, earthing alarm threshold value and delay time can be queried or changed in setting state. Tripping can be simulated by software. In this state, " $\boldsymbol{\Delta}$ " or " $\boldsymbol{\nabla}$ " button can be pressed to add or subtract value when "SET" indicating lamp is flickering. Don' t forget to press "Enter" button to save data after setting
Example 1 of changing long delay time is shown below:

Example 2 of short delay tripping simulated by software is shown below:

Long press

(3)Query state: press "Check" button in default interface to enter into query interface. Last 8 fault records, last 8 alarm records, breaker operation times, life record and thermal capacity can be queried in query state.
Example4 of querying second fault record is shown below:

Example5 of querying first alarm record is shown below:

Example6 of querying breaker operation times and life record is shown below:

(4)Tripping state: "Reset" button should be press to return default interface after tripping at fault.

Press "Test" button to simulate Instantaneous trip

14.3.3 Controller functions list

M type	H type
1 over-current protection (overload, short delay, instantaneous, earthing);	1 over-current protection (overload, short delay, instantaneous, earthing);
vector sum grounding mode.	vector sum grounding mode.
2 Neutral line protection	2 Neutral line protection
3 Current measurement	3 Current measurement
4 two test functions:	4 two test functions:
(1)Instantaneous trip test simulated by mechanical button	(1)Instantaneous trip test simulated by mechanical button
(2)Other trip tests simulated by software	(2)Other trip tests simulated by software
5 Ten fault records	5 Ten fault records
6 Ten alarm records	6 Ten alarm records
7 MCR protection	7 MCR protection
8 operation times records	8 operation times records
9 thermal capacity	9 thermal capacity
10 overload pre-alarm	10 overload pre-alarm
	11 communication function: MODBUS protocol

3M type	3H type
1 all functions of M-type controller are included	1 all functions of 3M-type controller are included
$2 \mathrm{HMI}: 128^{*} 64 \mathrm{LCD}$	2 voltage measurement and protection
	3 frequency measurement and protection
4 power measurement and protection	
	5 electric energy, power-factor, harmonic measurement
	6 communication function: MODBUS protocol
7 DI/DO function	

14.4 specifications of characteristics
14.4.1 Over-current protection characteristic curve

14.4.2 Overload long time-delay protection

Operating characteristics

Current Ratings Range(Ir)	tolerance	Current	Action time(s)						Time tolerance
$(0.4 \sim 1) \mathrm{ln}+\mathrm{OFF}$	$\pm 10 \%$	$\leq 1.05 \mathrm{Ir}$	>2h Non-trip						
		> 1.3 lr	<1h trip						
		1.51r(setting time)	15	30	60	120	240	480	$\pm 10 \%$
		2.01r	8.4	16.9	33.7	67.5	135	270	$\pm 10 \%$
Phase N Overload and Over-Current Characteristic			100% or 50% (Applicable to $3 \mathrm{P}+\mathrm{N}$ or 4P)						

14.3 Short-circuit short-delay protection

Short-circuit short delay protection has two protection modes. One is inverse time and definite time protection. $I^{2} \mathrm{Tsd}=(8 \mathrm{lr})^{2}$ tsd works when current is low. In this formula, I is actual current, Tsd is actual trip time, tsd is set trip delay time. When I is over inverse time set value but below 81 r, controller will operate according to over-current protection characteristic curve. When I is over both of inverse time set value and 81 Ir , controller will operate according to definite time protection. The other is definite time protection and set time is $0.11 \mathrm{~s}, 0.21 \mathrm{~s}, 0.31 \mathrm{~s}$, and 0.41 s . When I is over Isd but below li, controller will operate according to definite time protection.
Operating characteristics

| Current Ratings
 Range(Isd) | tolerance | Current | Action time(s) | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | Time
 tolerance | | |
| | | $\leq 0.9 \mathrm{lsd}$ | | |

Note: a. When the intelligent controller is Frame II (Inm=3200A, 4000A), Isd shouldn't be more than 40KA.
b. When the intelligent controller is FrameIII (Inm=6300), Isd shouldn't be more than 50KA
c. When tsd is 0.1 s or 0.2 s , time permissible error is $\pm 0.040 \mathrm{~s}$.
14.4.4 Short-circuit instantaneous protection

Tripping time for instantanous protection (including the inherent breaking time of circuit breaker) should be less than 50 ms (effective value protection) or 30 ms (peak value protection)
Operating characteristics

Current Ratings Range(li)	tolerance	Current	Time tolerance
$(1.5 \sim 20) \mathrm{In}+$ OFF	$\pm 15 \%$	$\leq 0.85 \mathrm{i}$	In the 0.2 s Non-trip

c. When the intelligent controller is FrameIII ($\mathrm{Inm}=6300$), li shouldn't be more than 75KA.
14.4.5 Earthing protection

Earthing protection has definite time characteristic. Fault delay time is shown below.

Operating characteristics of single-phase earthing protection

Current Ratings Range(Ig)	tolerance	Current	Action time(s)				Time tolerance
$\begin{aligned} & \text { Inm=1000/2000, } \\ & (0.2 \sim 0.8) \mathrm{In}+\text { OFF } \\ & \text { Inm }=3200 / 4000 / 6300, \\ & (500 \sim 1200) \mathrm{A}+\text { OFF } \end{aligned}$	$\pm 10 \%$	$\leq 0.91 \mathrm{~g}$	In the 2 tg Non-tripping				
		> 1.1 lg	In the $\operatorname{tg} \pm 0.032$ s or $\operatorname{tg}(1 \pm 25 \%)$ Tripping				
		$t g$	0.1	0.2	0.3	0.4	$\pm 15 \%$
		Returnable time	0.06	0.14	0.25	0.33	$\pm 15 \%$

Note: a. When $t g$ is 0.1 s or 0.2 s , time permissible error is $\pm 0.040 \mathrm{~s}$;
b. When Inm is 1000A, Ig should be more than 100A. When Inm is 2000A, Ig shouldn' t be more than 1200A.
c. When Inm is 3200A, 4000A or 6300A, Ig should be between 500A and 1200A.

Single-phase protection is usually used in neutral-point solid ground system. Controller has two different protection modes, being vector sum mode and external transformer mode.
In three-phase three-wire system using 3-pole breaker without external transformer, earthing fault signal comes from three-phase current vector sum. Operating characteristic is definite time protection.

In three-phase four-wire system using 4-pole breaker without external transformer, earthing fault signal comes from three- phase current and N -Pole current vector sum. Operating characteristic is definite time protection.

In three-phase four-wire system using 3-pole breaker with external N-pole transformer, earthing fault signal comes from three- phase and N -Pole current vector sum. Operating characteristic is definite time protection.
$(3 \mathrm{P}+\mathrm{N}) \mathrm{T}$ mode

Note:
(1) External N-pole transformer (connected to 6\#, 7\# terminal for NA1-1000, connected to 25\#, 26\# terminal for NA1-2000-6300) is a special product. Default lead wire is 2 meters long.
(2) Earthing protection in 3PT mode can only be used in balance load. It should be turned off or set value above allowable unbalance current when the load is unbalance or the controller may operate.
(3) The distance between external transformer and breaker should be less than 5 m in $(3 \mathrm{P}+\mathrm{N}) \mathrm{T}$ mode. When lead wire of external transformer needs to be longer than 2 meters, special requirement should be noted when ordering.

15. Accessories

15.1 Shunt release

The power-on time cannot be greater than 2 seconds / time, and the power-on frequency cannot be greater than 5 times / minute.
a.The shunt release should be used except for special products where the circuit breaker must be directly disconnected manually;
b.The shunt release could operated within 10 meters to break the circuit breaker.

Characteristics of shunt release

Rated control power supply voltage Us(V)			AC220/230	AC380/400	DC220	pulse	AC110 (not available for NA1-1000X)
Operating voltage (V)			(0.7-1.1)Us				
Break time (ms)			≤ 28				
Power consumption (VA/W)	Inm=1000A	pulse	56	56	250	250	-
	Inm=2000A~6300A	Intermittent(default)	300	300	132	70	300
		Pulse(option)	880	1800	880	850	850

Notes:

1.It must select pulse type in the automatic control system.
2. power-on time of the intermittent type cannot be greater than 2 s , pulse frequency of the pulse type cannot be more than 5 times $/ \mathrm{min}$, or the components are easily burnt;
3. If the circuit breaker is not break by a single power-on of 15 s , must disconnect the power on the shunt release immediately

15.2 Closed Electromagnet

After the energy storage of the motor is completed, the closed electromagnet can be operated and controlled within a range of 10 meters to instantaneously release the energy storage spring force of the operating mechanism to close the circuit breaker.

Characteristics of closed electromagnet

Rated control power supply voltage Us(V)			AC220/230	AC380/400	DC220	DC110	AC110 (not available for NAT-1000X)
Operating voltage (V)			(0.85-1.1) Us				
Close time (ms)			≤ 50				
Power consumption (VA/W)	$\mathrm{Inm}=1000 \mathrm{~A}$	pulse	56	56	250	250	-
	$\mathrm{Inm}=2000 \mathrm{~A} \sim 6300 \mathrm{~A}$	Intermittent(default)	300	300	132	70	300
		Pulse(option)	880	1800	880	850	850

Notes:
1.It must select pulse type in the automatic control system.
2. ppower-on time of the intermittent type cannot be greater than 2 s , pulse frequency of the pulse type cannot be more than 5 times/min, or the components are easily burnt;
3. Ensure that the product is in the energy storage state so that the closed electromagnet may be energized;
4.If the product is not closed after a single power-on for 15 s , must disconnect the power on the closed electromagnet immediately.
15.3 Undervoltage release (UVT) (The power must be turned on before the circuit breaker is closed)
15.3.1 The undervoltage release has instantaneous operation and delayed operation:

Operation types of each frame under voltage release

	Self-priming	Helped priming
Undervoltage instantaneous release	Inm=1000A, 6300A	Inm=2000A, 3200A, 4000A/3
Undervoltage delay release	Inm=1000A, 6300A	Inm=2000A, 3200A, 4000A/3

Notes:
1.Inm=1000A undervoltage delay does not require an external delay controller. The power-off operation is an instantaneous operation. There is no zero voltage delay function;
2.Inm $=6300$ A undervoltage delay does not require an external undervoltage delay controller. There is a delay function for low voltage and power off;
3. $\mathrm{Inm}=2000 \mathrm{~A} \sim 4000 \mathrm{~A} / 3$ undervoltage delay requires an external delay controller. There is a delay operation when the power is off. There is a zero voltage delay function.

Delay time of under voltage release

Delay time of under voltage release	Delay time (optional)	Accuracy
$\operatorname{lnm}=1000 \mathrm{~A}$	$1 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}, 7 \mathrm{~s}$ (not adjustable)	$\pm 15 \%$
$\operatorname{lnm}=2000 \mathrm{~A} \sim 4000 \mathrm{~A} / 3$	$1 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$ (non-adjustable)	$0 \sim 1 \mathrm{~s}$
$\operatorname{lnm}=6300 \mathrm{~A}$	$0.3 \mathrm{~s} \sim 7.5 \mathrm{~s}$ (adjustable)	$\pm 15 \%$

The undervoltage will not operate when the voltage returns to 85% Ue and higher,, within $1 / 2$ delay time.
Note:
A self-priming undervoltage delay release may be provided for special orders of NA1-2000X~6300X. There is no external undervoltage delay controller,
and the delay time is $0.3 \mathrm{~s} \sim 7.5 \mathrm{~s}$, selectable and adjustable with an accuracy of $\pm 15 \%$.
15.3.2 When the undervoltage release is not powered, the circuit breaker cannot be closed either electrically or manually:

Characteristics of under voltage release

Rated control power supply voltage $\mathrm{Ue}(\mathrm{V})$	AC110, AC220/230, AC380/400
Operating voltage (V)	$(0.35 \sim 0.7) \mathrm{Ue}$
Reliable closing voltage (V)	$(0.85 \sim 1.1) \mathrm{Ue}$
Reliable not-closing voltage (V)	$\leq 0.35 \mathrm{Ue}$
Power consumption (Inm=1000A/Inm=2000A~6300A)	$20 \mathrm{VA} / 48 \mathrm{VA}(\mathrm{W})$

15.4 The electric energy storage mechanism (the power-on time cannot be greater than 5 seconds / time, and the power-on frequency cannot be greater than 3 times $/ \mathrm{min}$) has an automatic re-energy storage function to facilitate dual power switching.

Characteristics of electric energy storage mechanism

Rated control power supply voltage Us(V)	AC380, AC220	DC220, DC110
Operating voltage (V)	$(0.85-1.1) \mathrm{Us}$	$(0.85-1.1) \mathrm{Us}$
Power consumption (Inm=1000A)	90 W	90 W
Power consumption (Inm=2000A)	85 W	85 W
Power consumption (Inm=3200A, 4000A/3)	110 W	110 W
Power consumption (Inm=6300A)	150 W	150 W
Energy storage time	$\leq 5 \mathrm{~s}$	$\leq 5 \mathrm{~s}$

Notes:
1.It is forbidden to turn on the power for 7 seconds to avoid damage.

15.5 Auxiliary contact NO

Standard type: Provides users with 4 sets of conversion contacts (default configuration).
Special type: 6 sets of Inm=1000A conversion contacts (for AC only);

Characteristic

Type	NA1-1000X			NA1-2000X/NA1-2000XN/NA1-2000XH/NA1-3200X/NA1-3200XN/NA1-4000X/NA1-6300X/NA1-6300XN		
Rated voltage (V)	AC230	AC400	DC220	AC230	AC400	DC220
conventional free-air thermal current lth (A)	10	6	0.5	6	6	6
Rated control capacity	300 VA	100 VA	60 W	300VA	300VA	60W

NA1-1000X			NA1-2000X/NA1-2000xN/NA1-2000xH/NA1-3200X/NA1-3200XN/NA1-4000X/NA1-6300X/NA1-6300xN		
Category	Voltage	Current	Category	Voltage	Current
AC-15	AC230V	1.3A	AC-15	AC230V	1.3A
	AC400V	0.25A		AC400V	0.75A
DC-13	DC110V	0.55A	DC-13	DC110V	0.55A
	DC220V	0.27A		DC220V	0.27A

15.6 Doorcase

Installed on the door of the distribution cubicle, for sealing the distribution cubicle and making the protection class to IP40(fixed type and drawout type).

15.8 Transparent shield (NA1-2000) (Optional)

Installed on the doorcase of the cubicle's small door, make the protection class to IP54. It is suitable for the fixed, drawout type circuit breaker and the load switch.

15.7 Phases barrier (Optional)

Installed between the busbars to increase the creepage distance.

15.9 Off position locking mechanism

When the circuit breaker is disconnected, padlock can be used to lock it after pulling out the lock lever, then the circuit breaker can't be "Test" or "connected" position.(Padlock is prepared by users)
15.10 Key lock

Lock the circuit breaker on the OFF position, then the circuit breaker can't be closed.
Locks and keys will be provided by us.
Separate lock and key is matched with one set of the circuit breaker.
Three same locks and two same keys are matched with three circuit breaker.
Note: Before pulling out the key, the break pushbutton should be pressed first, rotate the key anticlockwise, then pull it out.

15.11 Cable mechanical interlock

It can realize the interlock of two horizontal or vertical-installed, three poles or four poles, drawout type or fixed type circuit breaker.
a. If need bend the cable, make sure the radian is more than 120°.
b. Check and make sure enough lubricating oil of the cable.
c. The maximum distance between two interlock circuit breakers is 1.5 m .

Circuit diagram	Available running manner	
$\theta \quad \theta$	1QF	2QF
1QF 2QF	0	0
$\left.k^{*}-\cdots-\right)^{*}$	0	1
	1	0

[^2]15.12 Connecting-rod type mechanical interlock

For two vertically mounted three-pole or four-pole circuit breakers, the interlock can be realized where one makes and the other breaks.

Circuit diagram
Available running manner
Manner 1: three power supplies are provided for one circuit breaker only

1QF	2QF
0	0
0	1
1	0

16. Maintenance and Overhaul of Circuit Breaker

Safety Precautions

The following operations must be executed in turn before conducting the maintenance or overhaul of circuit breakers:
a. Circuit breaker opening operation to ensure the circuit breaker is in an opening state;
b. Disconnecting the upper-level knife switch (if any) to ensure the main circuit and secondary circuit are uncharged;
c. Circuit breaker discharging, opening operation to ensure the circuit breaker is in a discharging and opening state;
d. The components which the personnel might contact must be uncharged.

Keep Safe

Maintenance and overhaul cycle

Condition	Environment	Maintenance cycle	Overhaul cycle	Remarks
General environment	The air should be always kept clean and dry. There is no corrosive gas. The temperature is in between $-5^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$ The humidity should conform to Specification 1.3 Operating Conditions C Requirement for extreme atmosphere conditions.	Every six months	Once per year (every six months for more than 3 years of mounting period)	Confirming to IEC60947-2 Requirement for general environmental conditions.
	Lew temperature $-5^{\circ} \mathrm{C} \sim-40^{\circ} \mathrm{C}$ or high temperature $40^{\circ} \mathrm{C} \sim 65^{\circ} \mathrm{C}$ or humidity $\geq 90 \%$	Every three months	Every six months (every three months for more than 3 years of mounting period)	

16.1 Maintenance of circuit breaker
16.1.1 Foreign objects(such as tools, wire leads or fragments, metal objects) in the switchgear should be regularly cleared.
16.1.2 The dust on the circuit breaker must be regularly cleared to maintain its good insulation.
16.1.3 The spring washers of the main circuit connecting bolts, the earthing bolts must be checked for whether they are flattened and theconnection is firm.

16.1.4 Whether the opening or closing indication is correct and reliable.

16.2 Overhaul of circuit breaker
16.2.1 Connecting and mounting inspection

It is proposed to refer to the following requirement for the torsional forces of main circuit and secondary circuit.

Fastener specification	Torque requirement $\mathrm{N} \cdot \mathrm{m}$
M3	$0.4 \sim 0.5$
M4	$1.2 \sim 1.7$
M8	$16 \sim 26$
M10	$36 \sim 52$
M12	$61 \sim 94$

16.2.2 Insulating property test

The phase-phase and phase-earth insulation resistance, requirement $\geq 20 \mathrm{M} \Omega$.
The insulation resistance test must be first done after overhaul and long-time (≥ 7 days) of deenergization and before energization again.
16.2.3 Operating characteristic inspection

All accessories shall be connected with corresponding rated voltage according to the face shield nameplate requirement, and the following operations should be done:
Electric charging, closing and opening operation, 5times in cycle
Manual charging, closing and opening operation, 5times in cycle
The circuit breaker charging, opening and closing should be normal.
Note: The main circuit must be uncharged. If there is an under-voltage release, the rated voltage must be first connected.

Note: The picture takes NA1-2000X as an example
16.2.4 Inspection of circuit breaker components
16.2.4.1 Face shield dismantling

- Remove four bolts of circuit breaker fixed panel and take off the face shield. 1

16.2.4.2 Operating mechanism inspection

The mechanism components should be free of fracture and damage, and the fasteners are fastened.
Clear the dust and evenly apply oil onto the rotating components.

- Evenly apply 7012 low-temperature lubricating grease or lubricate same using the similar solid grease onto the mechanism rotating positions.
16.2.4.3 Intelligent controller (taking NA1-2000 type M type controller as an example) Parameter setting should conform to the site use requirement.
(1. Press the "Set" button to enter the parameter setting interface "Pro".
- 2. Press the "Enter" button to enter the protective parameter setting and
query interface.

3. Press the " Δ " or " v " button to in turn select the display of protective
parameter setting details.

- 4. Press the "Reset" button to return to the upper-level menu or exit from
the interface.

- Press the orange "Reset" button on the face shield to return to normal state.
16.2.4.4 Drawer set inspection (conduct the test after removing the body, taking NA1-2000X as an example) There are no foreign objects inside.

- Observe whether there are foreign objects inside the draw-out socket, like screws, wire leads, scrap iron; please clear same if any.

The flash barrier opening or closing is normal, and the spacing contact has no deformation or oxidization.

Rotate the friction positions and apply oil evenly.

16.2.4.5 Arcing Chamber (taking NA1-2000X~6300X as an example)

Each arc and arcing chambers are not broken. If any, please promptly replace same and clear inside dust, corrosion layer and arc discharge point. In case of serious corrosion or rust, please promptly conduct replacement.

Note: Inspection must be done after short-circuit current breaking.

- Conduct manual closing operation, and observe the main contact over-travel. Note: Please replace the contact if it reaches the position shown.

Clear dust, corrosion layer and particle burnt objects.

- Close the product and main contact is at the shown position. Observe any dust, particle burnt objects and oxidized corrosion layer of dynamic and static contacts. If any, please promptly clear same.

Note: Inspection must be done after short-circuit current breaking.
16.2.4.7 Secondary circuit inspection

No shell damage.
Inspect the contact between the draw-out body secondary circuitand drawer set secondary circuit using the multimeter. At the "Test" or "Connection" position, the contacts are in good contact, and the connecting screws are fastened, and the conductor insulation has no damage.
16.3 Replacement of undervoltage release, shunt release and closedelectromagnet accessories. The following operations must be executed before replacing the accessories. Cut off all power supplies and ensure the main circuit and secondary circuit power supplies are uncharged. The circuit breakers are in the discharging opening state.
16.3.1 Replacement of fixed accessories Remove the panel fixing bolts and dismantle the panel. Untie the tape and remove the connecting conductor. Remove the fixed accessory mounting screws. Dismantle the accessories and replace same.

Note: The shunt release should be first dismantled before replacing the NA1-2000 undervoltage release.
16.3.2 Replacement of draw-out accessories

Rotate the body to the detachment position and remove the body.
Remove the panel fixing bolts and dismantle the panel. Untie the tape and remove the connecting conductor. Remove the fixed accessory mounting screws. Dismantle the accessories and replace same.

Note: The shunt release should be first dismantled before replacing the NA1-2000 undervoltage release.

17. Common Failure Causes and Solutions

17.1 Troubleshooting logic

17.2 Faulty tripping analysis (taking NA1-2000X M as an example)

Failure cause identification
The failures are identified through the intelligent controller indication.

Note: The electrical closing operation is forbidden before troubleshooting.

18. Regular malfunction and solutions

Fault description	Reasons analysis	Maintenance method
	Over load tripping (Ir indicator flashing)	1. Check the breaking current value and operation time of intelligent release. 2. Analyze the load and electric network, exclude the overload if it happens. 3. Match the actual operating current with long time-delay current setting value. 4. Press the reset button to reclose the breaker
	Short circuit tripping ("Isd" or "Ii" indicator flashing)	1. Check the breaking current value and operation time of intelligent release. 2. Exclude the short circuit fault if it happens 3. Check the setting value of fintligent release 4. Check the normal state of breaker 5. Press the reset button to reclose the breaker
Tripping of circuit breaker	Earthing fault tripping (IG indicator flashing)	1. Check the breaking current value and acting time of intelligent release. 2. Exclude the earthing fault if that happens. 3. Match the fault current setting value with the actual protection.
4. Press the reset button to reclose the breaker.		

Fault description	Reasons analysis	Maintenance method
	Manual storage can't be realized	Mechanical fault with the energy-storage device
Circuit breaker can't store energy	Motor storage can't be realized 1. Power voltage of motor energy-stored device is less than $85 \% \mathrm{Us}$; 2. There is mechanical fault with energy-storage device	1. Power voltage of motor energy-stored device shouldn't less than 85% Us 2. Mechanical fault with the energy-storage device
Handle of drawerouttype circuit breaker can't be drawn in or out	1. There is padlock at the "opening" position 2. Slideway or breaker body isn't pulled into its position	1. Take away the padlock 2. Pull the slideway or breaker body into its position
Drawerout-type breaker can't be drawn out at the "opening" position	1. Handle isn't pulled out 2. Breaker is not totally at the " opening" position	1. Pull out the handle 2. Keep the circuit breaker totally at "opening" position
Drawerout-type breaker can't reach the "making" position	1. Something drop into the drawer base, and lock the mechanism or mechanism fault happens. 2. Breaker body not match with the frame -size rated current of drawer base	1. Check and clean the drawer base, or contact with manufacturer 2. Match the body with relevant drawer base
No display on intelligent release panel	1. Release isn't connected with power 2. There is fault with release	1. Check the power is connected or not 2. Cut off the power, then connect again. Otherwise contact with manufacturer
	Rated control voltage is less than $85 \% \mathrm{Us}$;	Check the electromagnet power voltage shouldn't be less than 85% Us.
Fault indicator still flashing after pressing the Reset button	Fault happened with intelligent release	Cut off the power, then connect again. Otherwise contact with manufacturer

NA1-1000X~6300X Ordering specification

Note: The casing current, rated current and auxiliary control voltage must be specified when ordering!
Note: 1) Please mark " \checkmark " or fill figure in the relative " \square " if no mark, we will provide according to conventional
Note: 2) The operational fuction of the intellgent controller and special requirements require additional costs. Tel.:0577-62877777-6213 Fax :0577-62877777-6288

NA1-6300X

NA1-4000X

NA1-3200X

NA1-2000X

NA1-1000X

Configuration instructions

1. NA1-2000X~6300X fundamental configurations
a. Motor-driven:

Under-voltage instantaneous release;
Shunt release;
Closing electromagnet;
4 suits of transform contact;
Motor driven operating mechanism;
M-type Intelligent Controller;
Horizontal wiring of main circuit;
Doorcase;
Element of main circuit;
Operating instructions of M-type Intelligent Controller Operating instructions of Air Circuit Breaker;
Packing box;
Drawer seat (Drawout type)
b. Manual:

Under-voltage instantaneous release;
4 suits of transform contact;
M-type Intelligent Controller;
Horizontal wiring of main circuit;
Doorcase;
Element of main circuit;
Operating instructions of M-type Intelligent Controller
Operating instructions of Air Circuit Breaker;
Packing box;
Drawer seat(Drawout type)
3. NA1-2000X~6300X operational configuration (additional costs)
Nonadjustable under voltage delayed release (1s, 3s, 5s);
Connecting-rod type mechanical interlock (for drawout
type);
Wire-cable mechanical interlock; Button lock; Key lock;
Door interlock'Locking device;
External current transformer earthing protection;
Vertical busbar;
Rotating busbar ($\mathrm{IN} \leq 3200$);
3NO (normal open) and 3NC (normal close) contacts;
4NO and 4NC contacts; 5 groups changeover contacts; 3 groups changeover contacts; H type intelligent controller;
Position signal; Counter; Protecting cover (NA1-2000);
Double power controller.
2. NA1-1000X fundamental configurations
a. Motor-driven:

Under-voltage instantaneous release;
Shunt release
Closing electromagnet;
Motor driven operating mechanism;
4 normal open and 4 normal close auxiliary contacts;
M-type Intelligent Controller;
Closing and breaking push button lock;
Horizontal wiring of main circuit;
Doorcase;
Element of main circuit;
Operating instructions of Air Circuit Breaker; Packing box;
Drawer seat(Drawout type)
b. Manual:

Under-voltage instantaneous release;
4 normal open and 4 normal close auxiliary
contacts;
M-type Intelligent Controller;
Horizontal wiring of main circuit;
Closing and breaking push button lock;
Doorcase;
Element of main circuit;
Operating instructions of Air Circuit Breaker;
Packing box;
Drawer seat(Drawout type)
4. NA1-1000X operational configuration (additional costs)
Under voltage delayed release; wire-cable mechanical interlock;
key lock; External current transformer earthing protection;
Vertical busbar; 6 groups changeover contacts; H type intelligent controller; Phases barrier, position signal

[^0]: Note: In order to change vertical connection to horizontal connection onsite, user needs to change the upper and lower busbars of phase B
 so they are different from those of phase A and phase C.

[^1]: L1 phase current display interface

[^2]: Notes: a. when the steel cable needs to be bent, enough transition arc should be reserved to guarantee flexible movement of steel cable
 b. check the steel cable and make sure there is enough lubricant in the steel cable to guarantee flexible movement of steel cable.

