Europe ### CHINT Electrics Europe S.R.L. Add: Via A. Pacinotti 28, 30033 Noale (VE) Tel: 0039 335 6265 032 E-mail: chint_eu@chint.com ### **Czech Republic** NOARK Electric Europe s.r.o. Add:Sezemická 2757/2, 193 00 Prague Tel: +420 226 203 120 Email: Europe@noark-electric.com www.noark-electric.eu ### **North America** ### **United States** NOARK Electric (USA) Inc. Add: 2188 Pomona Blvd., Pomona, CA 91767 Tel: 626-330-7007 Fax: 626-330-8035 E-mail: nasales@noark-electric.com na.noark-electric.com ### West Asia & Africa ### U.A.E CHINT West Asia & Africa FZE Add: Office NO. LB182406, P.O.Box:263174, Jebel Ali, Dubai, United Arab Emirates Tel: 00971-48848286 Fax: 00971-48848287 E-mail: chintwaa@chint.com ### Spain CHINT Electrics S.L. Add: Calle José Echegaray, Num 8.Parque Empresarial Las Rozas Edificio 3, Planta 1º, Oficina 3.C.P: 28232 Las Rozas (Madrid) Tel: 0034 91 636 59 98 Fax: 0034 91 645 95 82 E-mail: info@chintelectrics.es #### Russia 000 «Чинт Электрик» Адрес: РФ, 109089, г. Москва, ул. Угрешская, д.2, стр.3, оф.17 Тел.: +7 495 665 6340 Email: cis@chint.com ### **Latin America** #### **Brazil** **CHINT Electrics South America Ltd** Add: Av. Paulista, 1765 - Edifício Scarpa-Conj.22 Bela Vista –CEP 01311-200-São Paulo- SP Tel: 0055-11-3266-7654 E-mail: chintlatinamerica@chint.com, xjie@chint.com ### **Asia Pacific** #### China Zhejiang CHINT Electrics Co.,Ltd Add (Shanghai) :Bldg.2, No.3255 Sixian Road, Songjiang 201614 P.R.China Tel: 0086-21-67777706 Fax: 0086-21-67777777-88225 E-mail: asiapacific@chint.com ,lwgen@chint.com #### ZHEJIANG CHINT ELECTRICS CO.,LTD. Add: No. 1, CHINT Road, CHINT Industrial Zone, North Baixiang, Yueqing, Zhejiang, 325603, P.R.China Tel: +86-4001177797 Fax: +86-577-62775769 62871811 E-mail: global-sales@chint.com Oct. 2019 Air Circuit Breaker © CHINT Electric All Rights Reserved Recycle Paper Printed ### **CHINT**•Empower the World Founded in 1984, CHINT Group is a well-known enterprise in Chinese industrial electric appliance and new energy sectors. With total assets of over 60 billion RMB and more than 30 thousand employees, the company is running business that covers the power equipment ### **The Next Reliable Choice** ## Air Circuit Breaker ### Built-in busbar temperature sensor, to control every aspect Monitors, displays and forecasts the temperature of busbar in real time, with risk clear at a glance and security under control. ### With a USB port for better human-machine interaction Connected with PC or mobile devices through the USB port, lets you manage functions such as data reading, parameter setting, on-line detection and failure recording. # More detailed division of frame size, can fully cover various demands With a frame size of 1600A, 2000A, 3200A, 4000A,6300A, it provides a more cost-effective choice. # Absolute adaptability, with steady and reliable operation in extreme conditions -45°C/+70°C operating temperature range. Meets several applications requirements. # Real-time temperature sensor Continuous function monitoring More accurate risk identification ### Content | NXA series air circuit breaker | P-01 | |---|------| | Overview | P-03 | | Product selection | P-05 | | Functions and features | P-09 | | Technical parameters | P-09 | | Intelligent controller | P-11 | | Protection feature | P-15 | | Measurement precision of the intelligent controller | P-17 | | Accessories | P-19 | | Capacity derating and power loss | P-23 | | Dimension of busbar | P-26 | | Installation and wiring | P-29 | | Dimensions and installation | P-29 | | Secondary circuit wiring | P-51 | | Annex | P-56 | | I Configuration | P-56 | | II Selection table | P-57 | | Ⅲ Earth fault protection | P-58 | | IV Source-changeover controller | P-61 | ### **NXA** series air circuit breaker ### NXA series air circuit breaker Trademark 9 QR code (10) Secondary wiring terminal Extraction draw plate (only applicable to draw-out type) Breaking button "Disconnected" position locking (only applicable to draw-out type) (11)Energy-storage handle (12) Racking-handle entry (only applicable to draw-out type) Making button (13) Position indication (only applicable to draw-out type) Nameplate (14) Racking-handle storage (only applicable to draw-out type) Intelligent controller Energy-storage/release indicator (15 Breaking/making indicator (16 Fault-breaking indicator reset button ### **Overview** #### Circuit breaker - Frame size (A): 1600, 2000, 3200, 4000, 6300 - Breaking capacity: N,S,H - Rated operational voltage Ue (VAC): 380/400/415, 440/525/690 - Number of poles: 3P, 4P - Installation method: draw-out type, fixed type #### Operation conditions and environment adaptability - Operation temperature: - The electrical and mechanical characteristics are applicable to the ambient temperature of -5°C-+40°C. NXA can also operate in the ambient temperature of -45°C-+70°C (M type, A type), $-20^{\circ}\text{C} - +70^{\circ}\text{C}$ (P type, H type, CD-1), the derating factor is seen in P23-24. - Storage conditions: apply to -45°C~+70°C - NXA can resist the following electromagnetic interference - Overvoltage generated by electromagnetic interference - Overvoltage caused by environment interference or a power distributing system - Electrostatic discharge of radio waves (radio, intercom, radar and the like) - NXA has successfully passed the test for electromagnetic compatibility specified according to the following standards (EMC) IEC/EN 60947-2 The test can guarantee no false tripping and no interference on tripping time Protection grade: Front IP 20, other side IP 00 #### Connection - Rear connection Horizontal connection, vertical connection - Optional accessories Interphase barrier ### Lock - Padlocks of "Making" and "Breaking" push button - Position padlock (for locking the circuit breaker at disconnected position) - Chassis padlock - Door interlock: the circuit breaker is arranged at the connected or test part so as to prohibit to open the door ### **Indication contact** - Standard contact Making and breaking indication contacts Fault tripping indication contact - Optional accessories Position indication contact Spring charged indication contact ### **Drawowt type breaker** Drawer seat Body Drawout type breaker ### Fixed type breaker NXA16 Note:NXA63 fixed type is seen in P45 NXA20 ~ NXA40 ### Accessories Interphased partition Secondary wiring terminal-drawout type Secondary wiring terminal-fixed type N pole CT Counter PSU-1 ### **Product selection** #### NXA series air circuit breaker | Frame size | Rated current Breaking capacity | 400 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3200 | 3600 | 4000 | 5000 | 6300 | |------------|---------------------------------|-----|-----|-----|------|------|------|------|------|------|------|------|------|------| | | N | - | • | - | | | | | | | | | | | | 1600A | S | - | | | - | - | - | | | | | | | | | | Н | - | | | | | | | | | | | | | | | N | | | | - | - | - | - | | | | | | | | 2000A | S | | | | - | - | | | | | | | | | | | Н | | | | - | - | - | - | | | | | | | | | N | | | | | | - | - | • | - | | | | | | 3200A | S | | | | | | | - | • | • | | | | | | | Н | | | | | | - | - | - | • | | | | | | | N | | | | | | | | | - | • | - | | | | 4000A | S | | | | | | | | | | - | | | | | | Н | | | | | | | | | | - | | | | | 6300A | Н | | | | | | | | | | | - | - | - | Note: 1) Intelligent controller PT/HT type. The basic functions are the same with P/H type. T refers to the internal temperature measurement function. ²⁾ Manual operation does not contain motor-driven mechanism, closing electromagnet and shunt release. Motor operation contains all standard accessories of remote operation. ³⁾ Auxiliary working voltage of the intelligent controller: corresponding power modules is required if DC220V or DC110V is selected. ⁴ NXA16N10-AD3-AC230: frame size is 1600A, N type breaking capacity, rated current is 1000A, A type intelligent controller, draw-out type and 3 poles, control voltage is AC 230V motor operation. ### **Product selection** ### **Product selection** ### Model definition and description-accessories NXA 16 OF C04 Code of Frame size Code of accessories Specification of accessories product 16:1600A C04: Four groups of contacts C05: Five groups of contacts 20:2000A C06: Six groups of contacts 32:3200A OF: Auxiliary contact N3: Three normally open and three normally closed 40:4000A 63:6300A N4: Four normally open and four normally closed 20/40:2000A-4000A N5: Five normally open and five normally closed 20/32:2000A-3200A 1S1S: One lock and one key 2S1S: Two locks and one key KL: Key lock 20/63:2000A-6300A 3S2S: Three locks and two keys FCDP: Fixed type door frame DCDP: Draw-out type door frame FD: Fixed type interphased partition DD: Draw-out type interphased partition CE-CD-CT: Position signal ILK2: Mechanical interlocking two interlocking steel cables ### Note | Note | | |------|--| ### **Technical parameters** | Features | | | | | |---|----------------------------|------------|--|--| | Number of poles | 3/4 6300A only 3P | | | | | Rated operational voltage Ue (V) | 380/400/415 , 440/525/690V | | | | | Rated insulation voltage Ui (V) | 1000 | | | | | Rated impulse withstand voltage Uimp (kV) | 12 | | | | | Rated frequency (Hz) | 50/60 | | | | | Flashover distance (mm) | 0 | | | | | Applicable to isolation | IEC/EN 60947-2 | Applicable | | | | Pollution grade | IEC 60664-1 | N:3 | | | | Frame size | | | 1600A | | | | | | |---|---------------|------------------------------|-----------|-----------------|-------------|------|------|------| | Rated current (A) | | | 400 | 630 | 800 | 1000 | 1250 | 1600 | | Rated current of the fourth pole (A) | | | 400 | 630 | 800 | 1000 | 1250 | 1600 | | Type of the circuit breaker | | |
N | S | н | | | | | Rated ultimate short circuit breaking capacity (kA rms) VAC 50/60Hz | Icu | 380/400/415V
440/525/690V | 50
30 | 42
36 | 50
36 | | | | | Rated service short circuit breaking capacity (kA rms) VAC 50/60Hz | Ics | 380/400/415V
440/525/690V | 42
30 | 42
36 | 50
36 | | | | | Utilization category | 1 | | В | | | | | | | Rated short-time withstand current (kA rms) VAC 50/60Hz | Icw 1s | 380/400/415V
440/525/690V | 42
30 | 42
36 | 42
36 | | | | | | Icw 3s | 380/400/415V
440/525/690V | 20 | 25 | 25
- | | | | | Closed capacity (kA peak) VAC 50/60Hz | Icm | 380/400/415V
440/525/690V | 105
63 | 88.2
75.6 | 105
75.6 | | | | | Making current tripping protection function (MCR kA rms) | ' | | 10 | 16 | 16 | | | | | Breaking time (ms) | | | 32 | | | | | | | Closing time (ms) | | | 70 | | | | | | | Installation, connection and service life | | | | | | | | | | Samina life G/O male | Mechanical | Without maintenance | 15000 | | | | | | | Service life C/O cycle | Electrical | Without maintenance | 8000 | | | | | | | Connection | Horizontal | | | | | | | | | | Fixed type | 3P | 254×24 | 254×243.5×318.5 | | | | | | Size (width × depth × height) | Tixed type | 4P | 324×24 | 324×243.5×318.5 | | | | | | | | 3P | 308×3 | 31.5×351 | | | | | | | Draw-out type | 4P | 378×3 | 31.5×351 | | | | | | | | | | | | | | | | 2000A | | | | | | 3200A | | | | 4000A | | | 6300A | | | |--------|----------|------|------|------|------|---------|-----------|------|------|---------|---------|------|---------|---------|------| | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 1600 | 2000 | 2500 | 3200 | 3200 | 3600 | 4000 | 4000 | 5000 | 6000 | | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 1600 | 2000 | 2500 | 3200 | 3200 | 3600 | 4000 | 2000 | 2500 | - | | N | S | н | | | | N | S | н | | N | S | н | н | | | | 80 | 65 | 80 | | | | 80 | 80 | 100 | | 80 | 85 | 100 | 120 | | | | 50 | 55 | 55 | | | | 65 | 70 | 70 | | 65 | 75 | 75 | 85 | | | | 50 | 65 | 65 | | | | 80 | 80 | 85 | | 80 | 85 | 85 | 120 | | | | 50 | 55 | 55 | | | | 65 | 70 | 70 | | 65 | 75 | 75 | 85 | | | | В | | | | | | В | | | | В | | | В | | | | 50 | 65 | 65 | | | | 65 | 80 | 85 | | 65 | 85 | 85 | 100 | | | | 50 | 55 | 55 | | | | 65 | 70 | 70 | | 65 | 75 | 75 | 75 | | | | 37 | 42 | 42 | | | | 37 | 50 | 50 | | 37 | 50 | 50 | - | | | | - | - | - | | | | - | - | - | | - | - | - | - | | | | 176 | 143 | 176 | | | | 176 | 176 | 220 | | 176 | 187 | 220 | 264 | | | | 105 | 121 | 121 | | | | 143 | 154 | 154 | | 143 | 165 | 165 | 187 | | | | 16 | 16 | 16 | | | | 26 | 26 | 26 | | 26 | 26 | 26 | 26 | | | | 32 | | | | | | 32 | | | | 32 | | | 32 | | | | 70 | | | | | | 70 | | | | 70 | | | 70 | 15000 | | | | | | 10000 | | | | 10000 | | | 2000 | | | | 8000 | | | | | | 7000 | | | | 3000 | | | 500 | | | | | | | | | | - | | | | - | | | - | | | | 374×34 | 14×400 | | | | | 439×373 | 3.5×400 | | | 550×337 | 7.5×400 | | 897×435 | .5×399 | | | 469×34 | 14×400 | | | | | 554×373 | 3.5×400 | | | 700×337 | 7.5×400 | | 897×435 | i.5×399 | | | 403×43 | 30×438.5 | | | | | 463×499 |).5×438.5 | | | 569×416 | 5×438.5 | | 923×500 | ×435.5 | | | 498×43 | 30×438.5 | | | | | 578×499 | 0.5×438.5 | | | 719×416 | 5×438.5 | | 923×500 | ×435.5 | | - Display window: display the current value, the setting parameter, the fault current, the tripping time - 2. Ig indicator for earth fault indication - 3. Ir indicator for overload long-time-delay tripping - 4. Isd indicator for short circuit short-time-delay tripping - 5. Ii indicator for short circuit tripping - 6. Menu button for inquiring the dial position and fault record - 7. Rightward button: turn to the next state when inquiring the dial position - 8. Return button: back to the previous level or resetting - 9. Overload long-time-delay current setting - 10. Short circuit short-time-delay current setting - 11. Earth fault current setting - 12. Overload long-time-delay time setting - 13. Transparent cover lockhole - 14. Short circuit short-time-delay time setting - 15. Neutral line protection setting - 16. Earth fault time-delay setting - 17. Test button for simulating 6IR current - 18. Short circuit instantaneous current setting ### **Intelligent controller** #### M type intelligent controller (Basic type) #### Protection All the protective threshold and time delay are set by a dial switch - Overload protection - Ture RMS long-time-delay protection - Thermal memory: heat accumulation before and after tripping - Short circuit protection - Short-time delay (RMS) and instantaneous protection - Optional four steps time-delay setting - Earth fault protection Optional four steps time-delay setting - Neutral line overcurrent protection (4P) The neutral protective threshold can be adjusted to 50%, 100% and OFF - Test function Simulating 6Ir test current for test tripping - Tripping record function - Ampere meter Measure the real and effective value (RMS) of current with the precision of 2% for 40% to 150% in setting - Display window: display the current value, the setting parameter, the fault current, the tripping time - $2. \ Ig \ indicator \ for \ earth \ fault \ indication$ - 3. Ir indicator for overload long-time-delay tripping - 4. Isd indicator for short circuit short-time-delay tripping - 5. Ii indicator for short circuit tripping - 6. Menu button for inquiring the dial position and fault record - 7. Rightward button: turn to the next state when inquiring the dial position - 8. Return button: back to the previous level or resetting - 9. Overload long-time-delay current setting - 10. Short circuit short-time-delay current setting - 11. Earth fault current setting - 12. Overload long-time-delay time setting - 13. Transparent cover lockhole - 14. Short circuit short-time-delay time setting - 15. Neutral line protection setting - 16. Earth fault time-delay setting - 17. Test button for simulating 6IR current - 18. Short circuit instantaneous current setting #### A type intelligent controller (Current type) #### Protection All the protective threshold and time delay are set by a dial switch - Overload protection - Ture RMS long-time-delay protection - Thermal memory: heat accumulation before and after tripping - Short circuit protection - Short-time delay (RMS) and instantaneous protection - Optional four steps time-delay setting - Earth fault protection Optional four steps time-delay setting - Neutral line overcurrent protection (4P) The neutral protective threshold can be adjusted to 50%, 100% and OFF - Unbalanced current protection Protecting phase failure or three phase unbalance - Test function Simulating 6Ir test current for test tripping - Tripping record function - Ampere meter Measure the real and effective value (RMS) of current with the precision of 2% for 40% to 150% in setting - 1. Ig indicator for earth fault tripping - 2. Ir indicator for overload long-time-delay tripping - 3. Isd indicator for short circuit short-time-delay tripping - 4. Ii indicator for short circuit tripping - 5. Running indicator flickering in normal running - LCD screen with three-color backlight. Green stands for normal running, yellow stands for alarming and red stands for tripping. - 7. Setting button - 8. Leftward button - 9. Upward button - 10. Downward button - 11. Enter button - 12. Rightward button - 13. Transparent cover lockhole - 14. Mini-USB interface - 15. Test button for tripping test #### P type intelligent controller (Power type) #### Protection Setting all protective threshold values and time-delay by button The setting values can be displayed on LCD display window - Protection functions of all A type control units are included - Earth current protection function (Optional) External transformer are configured - Advanced protection function - Unbalanced voltage protection - Overvoltage and undervoltage protection - Overfrequency and underfrequency protection - Phase sequence protection - Reverse power protection function - Required value protection function The required value of the real and effective value of each current is calculated within a measurement window. When the required value is off limit, the protection action is carried out. The setting of a sliding time window is in the menu of "setting of a measurement meter". - ·A-phase maximal required current value, - ·B-phase maximal required current value, - ·C-phase maximal required current value, - N-phase maximal required current value are respectively set for each circumstance of the required value protection without being affected by the setting of the neutral line protection. #### Extended function - Self-diagnosis by the intelligent controller - Operation times/fault tripping/alarming/deflection recording function provides the latest ten times of recording - Main contact abrasion display function for evaluating the contact abrasion degree according to mechanical life, electrical services and breaking capacities of different frames. - Internal clock function - A Mini-USB interface is connected with a PC to achieve the functions of protection setting, fault record downloading, whole power quantity detection and parameter reading of a circuit breaker. - "test" push button - Electric energy meter - Current measurement - Voltage measurement - Frequency measurement - Required value measurement - Power (active power, reactive power and apparent) measurement - Electric energy (active power, reactive power and apparent) measurement - Power factor measurement - Busbar temperature measurement (Optional) The temperature of the busbar is measured by a temperature transformer in the busbar, and can be display on a LCD screen in real time. Customers can set the - temperature threshold value and set the alarm. LCD three-color backlight Green stands for normal running, yellow stands for alarming and red stands for tripping. - 1. Ig indicator for earth fault tripping - 2. Ir indicator for overload long-time-delay tripping - 3. Isd indicator for
short circuit short-time-delay tripping - ${\bf 4.} \ {\bf Ii} \ indicator \ for \ short \ circuit \ tripping$ - 5. Running indicator flickering in normal running - LCD screen with three-color backlight. Green stands for normal running, yellow stands for alarming and red stands for tripping. - 7. Setting button - 8. Leftward button - 9. Upward button - 10. Downward button - 11. Enter button - 12. Rightward button - 13. Transparent cover lockhole - 14. Mini-USB interface - 15. Test button for tripping test #### H type intelligent controller (Harmonic wave type) #### Protection Setting all protective threshold values and time-delay by button Besides the protective extended function of all P type control units, $% \left(\mathbf{P}_{\mathbf{P}}^{\mathbf{P}}\right) =\mathbf{P}_{\mathbf{P}}^{\mathbf{P}}$ H type control unit also comprises: - Load monitoring function - Zone selective interlock (ZSI) (Optional) - Communication function Modbus-RTU communication protocol - Input/output function - 2DI+2DO or 4DO - DI signal: AC230V (Standard configuration, and others can be selected); DC110V - DO needs to be configured with a power supply module (24VDC output) and a relay module. - Harmonic analysis function - Measurement of the fundamental wave current, the fundamental wave line voltage, the fundamental wave phase voltage, the fundamental wave power and each 3-31 odd harmonic wave current percentage (HRIh), the harmonic voltage percentage (HRUh), the total harmonic wave current distortion rate (THDi, thdi) and the total harmonic wave voltage distortion rate (THDu, thdu). - The harmonic wave percentage(HR) refers to the ratio of root-mean-square value of the Nth harmonic wave component contained in periodic alternative current quantity to the root-mean-square value of the fundamental wave component, and is expressed in percentage. ### **Protection features** The protection features of the intelligent controller comprise inverse time characteristic and constant time characteristic. When the fault current exceeds the set value of the inverse time limit, the controller performs constant time protection. The inverse time limit corresponds to the feature curve I2t. ### Overload long-time-delay protection feature Overload long-time-delay protection action threshold value <1.05Ir : > 2h, no action ≥1.3Ir : < 1h, action Ir current setting value range: 0.4In, 0.5 In, 0.6 In, 0.7 In, 0.8 In, 0.9 In, 1.0 In+OFF (M/A); 0.4In~1.0In+OFF(P/H) Inverse time limit action feature: I^2t , wherein $t=(6/N)^2 * tr$ | Setting Multiple of Current | Action Time | | | | | | | | |-----------------------------|-------------|----|----|-----|-----|-----|-----|-----| | 1.5Ir | 16 | 32 | 64 | 128 | 192 | 256 | 320 | 384 | | 2Ir | 9 | 18 | 36 | 72 | 108 | 144 | 180 | 216 | | 6Ir | 1 | 2 | 4 | 8 | 12 | 16 | 20 | 24 | Note: N --- the multiple I/Ir obtained by dividing failure current by set current t --- time delay action of the failure action tr --- long-time-delay set value Allowed error of the action time ±15% Conventional factory tuning:Ir=1.0In tr=2s@6Ir ### Short circuit short-time-delay protection feature Short circuit short-time-delay protection action threshold value < 0.85Isd: no action >1.15Isd: action Isd current set value range: 2Ir, 3Ir, 4Ir, 5Ir, 6Ir, 10Ir +OFF (max 50kA , M/A);2Ir~10Ir+OFF(max 50kA , P/H) | Current | Action time | | Remark | |---|---------------------|--|------------| | | | Action feature I ² t= (10Ir) ² tsd | B.U. | | Isd <i≤10ir< td=""><td>Inverse time limit</td><td>Setting time s 0.1, 0.2, 0.3, 0.4</td><td>P, H</td></i≤10ir<> | Inverse time limit | Setting time s 0.1, 0.2, 0.3, 0.4 | P, H | | | Constant time limit | Setting time s 0.1, 0.2, 0.3, 0.4 | | | I≥1.1Isd | | Minimum s 0.06, 0.16, 0.255, 0.34 | M, A, P, H | | | | Maximum s 0.14, 0.24, 0.345, 0.46 | | | | Return time | 0.05, 0.14, 0.25, 0.33 | | Note: Isd---short-time-delay current set value I--- failure current value Ir-long-time-delay set value t--- failure action time-delay time tsd---short-time-delay inverse time limit set value Permissible error of action time ±15% Conventional factory tuning:Isd=8Ir(Ir < 6250A) Isd=50kA(Ir≥6250A) tsd=0.4s ### Short circuit instantaneous protection features Short circuit instantaneous protection action threshold value < 0.85Ii: no action > 1.15Ii: action The current setting value of instantaneous action: 2In, 4In, 6In, 8In, 10In, 12In, 15In+OFF(NXA40 max50kA, NXA63 max63kA, M/A); 2In~15In+OFF(NXA40 max 50kA, NXA63 max63kA P/H) Note: action time≤50ms Conventional factory tuning:Ii=12In(In=400A~5000A) Ii=63kA(In=6300A) #### **Earth fault protection action features** Earth fault protection action threshold value < 0.9Ig: no action >1.1Ig: action M/A | Current setting value | A | В | С | D | E | F | G | OFF | |-----------------------|--------------------|-----------------|-------|-------|-------|-------|-------|-----| | NXA16, 20 | 0.2In | 0.3In | 0.4In | 0.5In | 0.6In | 0.8In | In | | | NXA32, 40, 63 | 500A | 640A | 800A | 960A | 1040A | 1120A | 1200A | | | tg(s) | Inverse time limit | Action features | | | | | | | P/H NXA16、20: 0.2In~1.0In+OFF NXA32、40、63: 500A~1200A+OFF $$t = \frac{(Ig)^2}{I^2} \times tg$$ | | Setting time (s) | 0.1 | 0.2 | 0.3 | 0.4 | |---------------------|------------------|------|------|-------|------| | Constant time limit | Minimum (s) | 0.06 | 0.16 | 0.255 | 0.34 | | Constant time mint | Maximal (s) | 0.14 | 0.24 | 0.345 | 0.46 | | | Return time | 0.05 | 0.14 | 0.25 | 0.33 | Note: Ig --- earth fault protection setting value. Default setting: NXA16/20: Ig = 0.5 In When In≥1250A , Ig max=1200A NXA32/40/63: Ig=800A I --- failure current value t --- failure action time-delay time tg --- earthing inverse time limit set value The permissible error of the inverse time limit action time: $\pm 15\%$ Conventional factory tuning:OFF ### Controller minimum display current | Frame | In | Minimum display value (A) | |-------|------------|-----------------------------| | 1600 | 400 ~ 1600 | 60 | | 2000 | 630 ~ 2000 | 60 | | ≥3200 | ≥1600 | 120 | ### Measurement precision of the intelligent controller | urrent measurement | | |-----------------------|---| | Measurement range | Ia, Ib, Ic and I _n are not less than 15In (rated current of the circuit breaker) | | , | Below 0.1In: the measurement is inaccurate | | | 0.1In-0.4In: the accuracy will be changed linearly from 5% to 2% | | Measurement precision | 0.4In-1.5In: the accuracy is 2% | | · | >1.5In: the accuracy will be changed linearly from 2% to 15% | | | The measurement accuracy of the earthing current is 10% | | | | | Voltage measurement | | | - | Line voltage: 0V~600V | | Measurement range | Phase voltage: 0V~300V | | Measurement precision | Error: ±1% | | | | | | | | Frequency | | | Measurement range | 40HZ~70HZ | | Measurement precision | Error: ± 0.1HZ | | | | | Power | | | Measurement mode | The effective value mode | | | 3P type: total active power, total reactive power and total apparent power | | Measurement content | 4P type: phase splitting active power, phase splitting reactive power, phase splitting apparent power, total active power, total apparent power | | | Active power: -32768KW~ + 32767KW | | | Reactive power: -32768Kvar~ + 32767Kvar | | Measurement power | Apparent power: 0KVA~65535KVA | | | Error: ±2.5% | | | • | | Power factor | | | Power factor | | | Measurement content | phase splitting power factor , total power factor | | Electric energy | | |-----------------------|--| | Measurement content | Input reactive electric energy (EQin), output reactive electric energy (Eqout) | | | Input active electric energy (EPin), output active electric energy (Epout) | | | Total active electric energy (EPtotal), total reactive electric energy (EQtotal), total apparent electric energy (Estotal) | | | Active electric energy: -32768KWh~ + 32767KWh | | Measurement range | Reactive electric energy: -32768Kvarh~ + 32767Kvarh | | | Apparent electric energy: 0~65535KVAh | | Measurement precision | Error ±2.5% | | Harmonic wave measurement | | |--|---| | | Current: Ia, Ib, Ic,I _N | | Fundamental wave measurement | Voltage: Uan, Ubn, Ucn | | Total harmonic wave distortion | THD: the total distortion rate of the harmonic wave relatively to the fundamental wave | | THDu and thdu | Thd: the total distortion rate of the harmonic wave relatively to the effective value | | Amplitude wave spectrum of harmonic wave | The controller can display FFT amplitude of odd harmonic wave from 3 to 31in percentage | | Measurement precision of control unit | ±2% | ### **Accessories: locks** #### **Pushbutton lock** The pushbutton lock is to lock the circuit breaker by a transperant conver blocks so as to prevent the breaking button and the making button of the circuit breaker from misoperation and guarantee the reliable running of the circuit breaker. #### **Body lock** - A key lock includes four types. The latter two are applied to 2 input and 1 connect power distribution system: - Random lock - One lock and one key - Two locks and one key - Three locks and two keys Note: When the user separately purchases the key lock for installation, the panel needs to be opened with a hole opener, and the hole opener is provided by the user. Hole diameter : NXA16:Φ21mm NXA20~63:Φ24mm #### Safety shutters padlock The padlock is prepared by users.Diameter of the lock is no more than Φ5mm. when a circuit breaker body is at the disconnected or
test part, the safety shutters automatically block access to the disconnecting contact cluster. ### "Disconnected" position padlock After the chassis and body are locked at "Disconnected" position by a padlock, the racking-handle cannot be inserted into racking-handle entry, and then the position of the body cannot be changed. ### Door interlock - Circuit breaker state door interlock A cabinet door is prohibited to be opened when the circuit breaker is closed. The cabinet door is allowed to be opened when the circuit breaker is disconnected. - Circuit breaker position door interlock The cabinet door is prohibited to be opened when the circuit breaker is at the connected and test part. The cabinet door is allowed to be opened when the circuit breaker is at the disconnected position. #### **Cable mechanical interlock** It can realize the interlock of two horizontal or vertical-installed, three poles or four poles, drawout type or fixed type circuit breaker. | Circuit diagram | Available runni | ng manner | |-----------------|-----------------|-----------| | 0 0 | 1QF | 2QF | | 1QF 2QF | 0 | 0 | | *** | 0 | 1 | | | 1 | 0 | | | | | Note:a. If need bend the cable, make sure radian is more than 120°. - b. Check and make sure enough lubricating oil of the cable. - c. The maximum distance between two interlock circuit breakers is 1.5 m. #### **Operation pushbutton lock (Optional)** Used for locking the break pushbutton and the close pushbutton(Padlock is prepared by users). | ON/OFF indication contacts | | | | | | | | |----------------------------|------------|---------------------------|---------------------------|--|--|--|--| | Standard configuration | | 4CO | 6CO(NXA16) | | | | | | Breaking capacity | | Current (A) / Voltage (V) | Current (A) / Voltage (V) | | | | | | VAC(AC-15) | | 1.3/240, 0.75/415 | 1.3/240, 0.75/415 | | | | | | Utilization category | VDC(DC-13) | 0.55/110, 0.27/220 | 0.55/110, 0.27/220 | | | | | | "Connected", "disconnected" and "test" position indication contact | | | | | | |--|------------|---------------------------|--|--|--| | Standard configuration | | 1CO/3 | | | | | Breaking capacity | | Current (A) / Voltage (V) | | | | | Utilization category | VAC(AC-15) | 1.3/240, 0.75/415 | | | | | Othization category | VDC(DC-13) | 0.55/110, 0.27/220 | | | | | Alarming contact | | | | | | | |------------------------|------------|---------------------------|--|--|--|--| | Standard configuration | | 100 | | | | | | Breaking capacity | | Current (A) / Voltage (V) | | | | | | Utilization category | VAC(AC-15) | 1.3/240, 0.75/415 | | | | | | Othization category | VDC(DC-13) | 0.55/110, 0.27/220 | | | | | | Spring charging indication contact | | | | | | | |------------------------------------|------------|--------------------------|--|--|--|--| | Standard configuration | | 1NO | | | | | | Breaking capacity | | Current (A)/ Voltage (V) | | | | | | VAC(AC-15) | | 1.3/240, 0.75/415 | | | | | | Utilization category | VDC(DC-13) | 0.55/110, 0.27/220 | | | | | Note: ¹⁾ CO refers to a switch contact, and a one-normally-open and one-normally-closed contact is matched with a common terminal. ### Source-changeover systems - Mechanical interlock1 normal and 1 replacement - 2 incoming and 1 busbar - Source-changeover controller (with adaptor) - 1 normal and 1 replacement: mechanical interlock+2A type controller - 2 incoming and 1 busbar: mechanical interlock+3A type controller common terminal. ² NO refers to a normally open contact. NC refers to a normally closed contact. 1600A frame MO 2000A~6300A frame MO 1600A frame CC&ST 2000A~6300A frame CC&ST Motor-driven mechanism (MO) (Standard configuration) When a circuit breaker is switched on, an motor operation mechanism stores energy automatically, so that when the circuit breaker is tripped, the device can switch on instantly. An energy-storage handle as spare when no auxiliary power supply is provided. | Characteristics | | | | | | |----------------------------------|-------------|--|--|--|--| | Power supply | VAC 50/60HZ | 220/230/240, 380/400/415 | | | | | | VDC | 110, 220 | | | | | Operation threshold | | 0.85-1.1Us | | | | | Frame size: power loss (VA or W) | | 16: 75W; 20: 85W; 32: 110W; 40: 110W; 63: 150W | | | | | Motor overcurrent | | ≤1min | | | | | Charging time | | ≤7s | | | | | Operation frequency | | ≤2times/min | | | | - Voltage coils (CC &ST) (Standard configuration) - Closing coil (CC) The CC closing coil remotely closes the circuit breaker if the spring mechanism is charged. Shunt release (ST) The ST release instantaneously opens the circuit breaker when energised. | Characteristics | | сс | ST | | | |-------------------------------------|-------------|-------------------------|-------------------------|--|--| | | VAC 50/60HZ | 220/230/240 | 220/230/240 | | | | Power supply | VAC 50/60HZ | 380/400/415 | 380/400/415 | | | | | VDC | 220, 110 | 220, 110 | | | | Operational voltage | | 0.85-1.1Us | 0.7-1.1Us | | | | Frame size: | AC | 16: 400VA; 20~63: 400VA | 16: 400VA; 20~63: 400VA | | | | power loss (VA or W) | DC | 16: 380W; 20~63: 130W | 16: 380W; 20~63: 130W | | | | Circuit breaker response time at Un | | 40ms-60ms | 30ms-50ms | | | 1600A frame UVT 2000~4000A frame UVT 6300A frame ASUVT 2000~4000A frame UVTD #### Undervoltage release (UVT) When the power supply voltage drops to be a value between 35%-70%, the release coil causes the circuit breaker to trip instantly. If there is no supply on the release, it is impossible to close the circuit breaker, either manually or electrically. Circuit breaker closing is enabled again when the supply voltage of the release returns to 85% of its rated value. | Characteristics | | | | | | |----------------------------|---------------|------------|--|--|--| | | VAC 50/60HZ | | 220/230/240, 380/400/415 | | | | Power supply | VDC | | - | | | | Operation threshold | Open | 0.35-0.7Ue | 0.35-0.7Ue | | | | | Closed 0.85Ue | | 0.85-1.1Ue | | | | Frame size: power loss (W) | | | 16: 220W/15W; 20~40: 220W/13W; 63: 90W/25W | | | Note: actuation/maintaining. #### UVT delay unit (UVTD) To eliminate the false tripping caused by short-time voltage drop, UVT action time delay is required. The function is realized by additionally increasing a time delay unit for UVT (Except the NXA16 and NXA63). | Characteristics | | | | | | | |-----------------------------|------------------------|--|--|--|--|--| | Power supply | VAC 50/60HZ | VAC 50/60HZ | | | | | | Operation threshold | Open | 0.35-0.7Ue | | | | | | Operation threshold | Closed 0.85Ue | | | | | | | Frame size: power loss (VA) | 16: 20VA; 20~40: 48 | 16: 20VA; 20~40: 48VA | | | | | | Adjustable time | 16:1s, 3s, 5s, 7s; 20- | 16:1s, 3s, 5s, 7s; 20~40 : 1s, 3s, 5s; 63:0.3s, 0.5s, 0.7s, 1s, 2s, 3s, 5s, 7s | | | | | ### **Capacity derating and power loss** ### Temperature capacity derating table of the fixed type circuit breaker #### 1600A frame | Ambient temperature | 400A | | 630A | | 800A | | 1000A | | 1250A | | 1600A | | |---------------------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------| | Connection mode | Horizontal | Vertical | | 40° | - | - | - | - | - | - | - | - | - | - | - | - | | 45° | - | - | - | - | - | - | - | - | - | - | - | - | | 50° | - | - | - | - | - | - | - | - | - | - | 1550 | 1600 | | 55° | - | - | - | - | - | - | - | - | 1150 | 1200 | 1500 | 1550 | | 60° | - | - | 550 | 580 | - | - | - | - | 1050 | 1100 | 1450 | 1500 | ### 2000A frame | Ambient temperature | 630A | | 800A | | 1000A | | 1250A | | 1600A | | 2000A | | |---------------------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------| | Connection mode | Horizontal | Vertical | | 40° | - | - | - | - | - | - | - | - | - | | - | - | | 45° | - | - | - | - | - | - | - | - | 1550 | | 1900 | - | | 50° | - | - | - | - | - | - | - | - | 1500 | 1550 | 1850 | 1900 | | 55° | - | - | - | - | - | - | - | | 1400 | 1450 | 1800 | 1800 | | 60° | - | - | - | - | - | - | - | - | 1300 | 1350 | 1700 | 1700 | #### 3200A frame | Ambient temperature | 1600A | | 2000A | | 2500A | | 3200A | | |---------------------|------------|----------|------------|----------|------------|----------|------------|----------| | Connection mode | Horizontal | Vertical | Horizontal | Vertical | Horizontal | Vertical | Horizontal | Vertical | | 40° | - | - | - | - | - | - | - | - | | 45° | - | - | - | - | - | - | - | - | | 50° | - | - | - | - | - | - | 3100 | - | | 55° | - | - | - | - | 2450 | - | 3000 | 3050 | | 60° | - | - | - | - | 2350 | 2400 | 2900 | 2950 | ### 4000A frame | Ambient temperature | 3200A | | 3600A | 3600A | | | |---------------------|------------|----------|------------|----------|------------|----------| | Connection mode | Horizontal | Vertical | Horizontal | Vertical | Horizontal | Vertical | | 40° | - | - | - | - | - | - | | 45° | 3100 | - | - | - | 3800 | 3850 | | 50° | 3000 | - | - | - | 3600 | 3650 | | 55° | 3000 | 3050 | 3400 | 3450 | 3400 | 3450 | | 60° | 2900 | 2900 | 3200 | 3250 | 3200 | 3250 | ### 6300A frame | Ambient temperature | 4000A | | 5000A | | 6300A | | |---------------------|------------|----------|------------|----------|------------|----------| | Connection mode | Horizontal | Vertical | Horizontal | Vertical | Horizontal | Vertical | | 40° | - | - | - | - | - | - | | 45° | - | - | - | - | - | - | | 50° | - | - | - | - | 5600 | 5650 | | 55° | - | - | 4800 | 4850 | 5400 | 5450 | | 60° | - | - | 4800 | 4850 | 5200 | 5250 | Note: "-" refers to no capacity derating. ### Temperature capacity derating table of the draw-out type circuit breaker #### 1600A frame | Ambient temperature | 400A |
| 630A | | 800A | | 1000A | | 1250A | | 1600A | | |---------------------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------| | Connection mode | Horizontal | Vertical | | 40° | - | - | - | - | - | - | - | - | - | - | - | - | | 45° | - | - | - | - | - | - | - | - | - | - | 1550 | - | | 50° | - | - | - | - | - | - | - | - | 1150 | 1200 | 1500 | 1550 | | 55° | - | - | 550 | 580 | - | - | - | - | 1050 | 1100 | 1450 | 1500 | | 60° | - | - | 500 | 530 | - | - | 950 | - | 950 | 1000 | 1400 | 1450 | ### 2000A frame | Ambient temperature | 630A | | 800A | | 1000A | | 1250A | | 1600A | | 2000A | | |---------------------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------| | Connection mode | Horizontal | Vertical | | 40° | - | - | - | - | - | - | - | - | - | - | - | - | | 45° | - | - | - | - | - | - | - | - | 1500 | - | 1850 | 1900 | | 50° | - | - | - | - | - | - | - | - | 1400 | 1500 | 1750 | 1850 | | 55° | - | - | - | | - | | - | - | 1300 | 1400 | 1650 | 1750 | | 60° | 600 | - | - | - | - | - | 1200 | - | 1200 | 1300 | 1550 | 1650 | #### 3200A frame | Ambient temperature | 1600A | | 2000A | | 2500A | | 3200A | | |---------------------|------------|----------|------------|----------|------------|----------|------------|----------| | Connection mode | Horizontal | Vertical | Horizontal | Vertical | Horizontal | Vertical | Horizontal | Vertical | | 40° | - | - | - | - | - | - | _ | - | | 45° | - | - | - | - | 2450 | - | 3100 | - | | 50° | - | - | - | - | 2400 | 2450 | 3000 | 3100 | | 55° | - | - | - | - | 2350 | 2400 | 2900 | 3000 | | 60° | - | - | - | - | 2300 | 2350 | 2800 | 2900 | ### 4000A frame | Ambient temperature | 3200A | | 3600A | | 4000A | | | |---------------------|------------|----------|------------|----------|------------|----------|--| | Connection mode | Horizontal | Vertical | Horizontal | Vertical | Horizontal | Vertical | | | 40° | - | - | - | - | - | - | | | 45° | 3100 | - | - | - | 3800 | 3850 | | | 50° | 3000 | 3100 | - | - | 3600 | 3650 | | | 55° | 2900 | 3000 | 3400 | 3450 | 3400 | 3450 | | | 60° | 2800 | 2900 | 3200 | 3250 | 3200 | 3250 | | ### 6300A frame | Ambient temperature | 4000A | | 5000A | | 6300A | | | |---------------------|------------|----------|------------|----------|------------|----------|--| | Connection mode | Horizontal | Vertical | Horizontal | Vertical | Horizontal | Vertical | | | 40° | - | - | - | - | - | - | | | 45° | - | - | - | - | - | - | | | 50° | - | - | - | - | 5600 | 5650 | | | 55° | - | - | 4800 | 4850 | 5400 | 5450 | | | 60° | - | - | 4800 | 4850 | 5200 | 5250 | | Note: "-" refers to no capacity derating. ### Altitude capacity derating factor | Altitude height (m) | | 2000 | 3000 | 4000 | 5000 | |---|------|------|------|------|----------------------| | Rated impulse withstand voltage (kV) | Uimp | 12 | 10 | 8.57 | 7.5 | | Average insulation grade (V) | Ui | 1000 | 833 | 714 | 625 | | Maximal operational voltage (V) 50/60HZ | Ue | 690 | 580 | 500 | 415 | | Average heat operational current(40)°C | | 1.0 | 0.88 | 0.78 | contact with factory | ### Power loss and input and output resistance Power loss is the power loss of each pole measured at In, 50/60Hz. The input/output resistance is the DC resistance value of each pole at the cold state. | Frame size | 5.1 | Draw-out type | | Fixed type (W) | | |------------|-------------------|----------------|--------------------------------|----------------|--------------------------------| | Frame size | Rated current (A) | Power loss (W) | Input/output resistance (μohm) | Power loss (W) | Input/output resistance (μohm) | | | 400 | 30.5 | 63.6 | 15.6 | 32.4 | | | 630 | 75.7 | 63.6 | 38.6 | 32.4 | | 16004 | 800 | 99.1 | 51.6 | 54.1 | 28.2 | | 1600A | 1000 | 154.8 | 51.6 | 84.6 | 28.2 | | | 1250 | 241.9 | 51.6 | 132.2 | 28.2 | | | 1600 | 262.7 | 34.2 | 138.2 | 18.0 | | | 630 | 58.6 | 49.2 | 26.4 | 22.2 | | | 800 | 73.7 | 38.4 | 36.6 | 19.1 | | 2222 | 1000 | 115.2 | 38.4 | 57.2 | 19.1 | | 2000A | 1250 | 180 | 38.4 | 89.4 | 19.1 | | | 1600 | 294.9 | 38.4 | 146.5 | 19.1 | | | 2000 | 388.8 | 32.4 | 204.5 | 17.0 | | | 1600 | 127.2 | 16.6 | 60.1 | 7.8 | | 22004 | 2000 | 198.7 | 16.6 | 93.9 | 7.8 | | 3200A | 2500 | 310.5 | 16.6 | 146.7 | 7.8 | | | 3200 | 479.2 | 15.6 | 206.4 | 6.8 | | | 3200 | 435 | 14.1 | 239.6 | 7.8 | | 4000A | 3600 | 690.5 | 17.7 | 272.9 | 7.0 | | | 4000 | 852.5 | 17.7 | 337 | 7.0 | | | 4000 | 403.2 | 9.0 | 230.4 | 7.0 | | 6300A | 5000 | 630 | 9.0 | 360 | 7.0 | | | 6300 | 1000.2 | 8.8 | 571 | 6.4 | ### **Dimension of busbar** #### **Bolt configuration** | Type of bolt | Application | Fastening busbar | |--------------|-------------------------------|------------------| | 16: M10 | Fastening busbar | (49~59)N·m | | 20~63: M12 | Fastening busbar | (86~103)N·m | | 16~63 : M3 | Fastening secondary connector | (0.5~0.7)N.m | #### Hole size and installation twisting moment of busbar | Drilling Φ (mm) | Diameter of bolt | Fastening twisting moment | | | |-------------------|------------------|---------------------------|--|--| | 16: Φ11 | M10 | (49~59)N·m | | | | 20~63:Ф13 | M12 | (86~103)N·m | | | #### Connection busbar specification reference under different temperature Maximum permissible temperature of busbar: 100°C The material of busbar is bare copper | | | Ambient te | mperature(-5~4 | 0)°C | | Ambient temperature 50°C | | | | Ambient temperature 60°C | | | | | |-------|---------------|---------------------|----------------------|---------------------|------------------|--------------------------|------------------|------------------|-------------------|--------------------------|------------------|------------------|-------------------|--| | Frame | Rated current | 5mm thick | 5mm thick busbar 10m | | 0mm thick busbar | | 5mm thick busbar | | 10mm thick busbar | | 5mm thick busbar | | 10mm thick busbar | | | size | (A) | Number
of pieces | Specification | Number
of pieces | Specification | Number of pieces | Specification | | | 1600A | 400 | 2 | 30*5 | 1 | 30*10 | 2 | 30*5 | 1 | 30*10 | 2 | 30*5 | 1 | 30*10 | | | | 630 | 2 | 40*5 | 1 | 40*10 | 2 | 40*5 | 1 | 40*10 | 2 | 40*5 | 1 | 40*10 | | | | 800 | 2 | 50*5 | 1 | 50*10 | 2 | 50*5 | 1 | 50*10 | 2 | 50*5 | 1 | 50*10 | | | | 1000 | 3 | 50*5 | 2 | 40*10 | 3 | 50*5 | 2 | 40*10 | 3 | 50*5 | 2 | 40*10 | | | | 1250 | 4 | 40*5 | 2 | 40*10 | 4 | 50*5 | 2 | 50*10 | 4 | 50*5 | 2 | 50*10 | | | | 1600 | 4 | 50*5 | 2 | 50*10 | 4 | 50*5 | 2 | 50*10 | 4 | 50*5 | 2 | 50*10 | | | | 630 | 2 | 40*5 | 1 | 40*10 | 2 | 50*5 | 1 | 50*10 | 2 | 60*5 | 1 | 60*10 | | | 2000A | 800 | 2 | 50*5 | 1 | 50*10 | 2 | 50*5 | 1 | 50*10 | 2 | 60*5 | 1 | 60*10 | | | | 1000 | 3 | 50*5 | 2 | 40*10 | 3 | 50*5 | 2 | 40*10 | 3 | 60*5 | 2 | 50*10 | | | | 1250 | 3 | 60*5 | 2 | 50*10 | 3 | 60*5 | 2 | 50*10 | 3 | 60*5 | 2 | 50*10 | | | | 1600 | 4 | 60*5 | 2 | 60*10 | 4 | 60*5 | 2 | 60*10 | 4 | 60*5 | 2 | 60*10 | | | | 2000 | 6 | 60*5 | 3 | 60*10 | 6 | 60*5 | 3 | 60*10 | 6 | 60*5 | 3 | 60*10 | | | | 1600 | 2 | 100*5 | 1 | 100*10 | 2 | 100*5 | 1 | 100*10 | 2 | 100*5 | 1 | 100*10 | | | 3200A | 2000 | 4 | 100*5 | 2 | 100*10 | 4 | 100*5 | 2 | 100*10 | 4 | 100*5 | 2 | 100*10 | | | 3200A | 2500 | 4 | 100*5 | 2 | 100*10 | 4 | 100*5 | 2 | 100*10 | 4 | 100*5 | 2 | 100*10 | | | | 3200 | 8 | 100*5 | 4 | 100*10 | 8 | 100*5 | 4 | 100*10 | 8 | 100*5 | 4 | 100*10 | | | | 3200 | 8 | 100*5 | 4 | 100*10 | 8 | 100*5 | 4 | 100*10 | 8 | 100*5 | 4 | 100*10 | | | 4000A | 3600 | 7 | 120*5 | 3 | 120*12 | 7 | 120*5 | 3 | 120*12 | 7 | 120*5 | 3 | 120*12 | | | | 4000 | 8 | 120*5 | 4 | 120*10 | 8 | 125*5 | 4 | 125*10 | 8 | 125*5 | 4 | 125*10 | | | | 4000 | 12 | 100*5 | 6 | 100*10 | 12 | 100*5 | 6 | 100*10 | 14 | 100*5 | 7 | 100*10 | | | 6300A | 5000 | 14 | 100*5 | 7 | 100*10 | 14 | 100*5 | 7 | 100*10 | 16 | 100*5 | 8 | 100*10 | | | | 6300 | 16 | 100*5 | 8 | 100*10 | 16 | 100*5 | 8 | 100*10 | 18 | 100*5 | 9 | 100*10 | | #### Note - a. When a copper bar selected by users is not matched with a wiring terminal of the circuit breaker, extended busbar is required to be designed to transfer, and is designed by the users of their own. The cross section of the extended busbar cannot be less than the requirement in the table above. The interval among the extended busbar is not less than the interval among wiring terminals of the circuit breaker. - b. After the busbar recommended in the table above is installed, the electric clearance between adjacent phases of the circuit breaker is not less than 18mm. - c. Electrical elements are used for three-phase rectification and high-frequency inversion, such as a high-frequency induction heating furnace (medium-frequency furnace steelmaking equipment), a solid high-frequency welding machine (such as an embedded arc electric welding machine), vacuum heating smelting equipment (such as a monocrystalline silicon growth furnace), in load equipment by controlled silicon. When a circuit breaker is selected, the influence on the circuit breaker by higher order harmonic component generated by controlled silicon is required to be considered besides the influences by the environment temperature and altitude height. At the same time, capacity derating is required, and the capacity coefficient (0.5-0.8) is recommended. - d. The electric clearance of fastening bolts of upper and lower busbar needs to be not less than 20mm after the installation of the busbar by users. - e. After the installation of the circuit breaker, the safety clearance among electrified bodies with different electric potential and between the electrified bodies and the ground are not less than 18mm. ### Selective protection between NM8 and NXA | Selective prote | ection between | NM8 and NXA | | Frame size rated current | NXA16 | | | | | | NXA20 | | | | |--------------------------|--------------------------
--------------------------------------|----------|--|-----------------------|------------------------|---------|--------------|------------|----------|------------------------|---------|--|--| | | | | | Rated current (A) | 400 | 630 | 800 | 1000 | 1250 | 1600 | 630 | 800 | | | | Downstream | | | Upstream | Default setting
ratings of short
time-delay 8In (kA) | 3.2 | 5.04 | 6.4 | 8 | 10 | 12.8 | 5.04 | 6.4 | | | | | | | | Setting ratings (kA) | 0.8~4 | 1.26 ~ 6.3 | 1.6~8 | 2~10 | 2.5 ~ 12.5 | 3.2 ~ 16 | 1.26 ~ 6.3 | 1.6~8 | | | | | | | | Delayed tripping time (s) | 0.1 , 0.2 , 0.3 , 0.4 | | | | | | | | | | | | | | | Returnable time | 0.05 , 0.14 | , 0.25 , 0.33 | | | | | | | | | | Frame size rated current | Rated current (A) | Instantaneous setting ratings (kA) | | | | | | | | | | | | | | | 16 | 0.16 | | | 0.8~4 | 1.26~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.26~6.3 | 1.6~8 | | | | | 16 | 0.19 (Motor) | | | 0.8~4 | 1.26~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.26~6.3 | 1.6~8 | | | | | 20 | 0.2 | | | 0.8~4 | 1.26~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.26~6.3 | 1.6~8 | | | | | 20 | 0.24 (Motor) | | | 0.8~4 | 1.26~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.26~6.3 | 1.6~8 | | | | | 25 | 0.25 | | | 0.8~4 | 1.26~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.26~6.3 | 1.6~8 | | | | | | 0.30 (Motor) | | | 0.8~4 | 1.26~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.26~6.3 | 1.6~8 | | | | | 32 | 0.32 | | | 0.8~4 | 1.26~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.26~6.3 | 1.6~8 | | | | | | 0.38 (Motor) | | | 0.8~4 | 1.26~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.26~6.3 | 1.6~8 | | | | NM8-100 | 40 | 0.4 | | | 0.8~4 | 1.26~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.26~6.3 | 1.6~8 | | | | NM8S-100 | | 0.48 (Motor) | | | 0.8~4 | 1.26~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.26~6.3 | 1.6~8 | | | | | 50 | 0.5 | | | 0.8~4 | 1.26~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.26~6.3 | 1.6~8 | | | | | | 0.60 (Motor) | | | 0.828~4 | 1.26~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.26~6.3 | 1.6~8 | | | | | 63 | 0.63 | | | 0.869~4 | 1.26~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.26~6.3 | 1.6~8 | | | | | | 0.75 (Motor) | | | 1.035~4 | 1.26~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.26~6.3 | 1.6~8 | | | | | 80 | 0.8 | | | 1.104~4 | 1.26~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.26~6.3 | 1.6~8 | | | | | | 0.96 (Motor) | | | 1.325~4 | 1.324~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.324~6.3 | 1.6~8 | | | | | 100 | 1 | | | 1.380~4 | 1.380~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.380~6.3 | 1.6~8 | | | | | | 1.20 (Motor) | | | 1.656~4 | 1.656~6.3 | 1.656~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.656~6.3 | 1.656~8 | | | | | 100 | 1 20 (14-1-1) | | | 1.380~4 | 1.380~6.3 | 1.6~8 | 2~10 | 2.5~12.5 | 3.2~16 | 1.380~6.3 | 1.6~8 | | | | | | 1.20 (Motor)
1.25 | | | 1.656~4 | 1.656~6.3
1.725~6.3 | 1.656~8 | 2~10
2~10 | 2.5~12.5 | 3.2~16 | 1.656~6.3
1.725~6.3 | 1.656~8 | | | | | 125
160
180
200 | 1.5 (Motor) | | | 2.070~4 | 2.070~6.3 | 2.070~8 | 2.070~10 | 2.5~12.5 | 3.2~16 | 2.070~6.3 | 2.070~8 | | | | | | 1.6 (Motor) | | | 2.208~4 | 2.208~6.3 | 2.208~8 | 2.208~10 | 2.5~12.5 | 3.2~16 | 2.208~6.3 | 2.208~8 | | | | | | 1.92 (Motor) | | | 2.650~4 | 2.649~6.3 | 2.649~8 | 2.649~10 | 2.649~12.5 | 3.2~16 | 2.649~6.3 | 2.649~8 | | | | NM8-250 | | 1.8 | | | 2.484~4 | 2.484~6.3 | 2.484~8 | 2.484~10 | 2.500~12.5 | 3.2~16 | 2.484~6.3 | 2.484~8 | | | | NM8S-250 | | 2.16 (Motor) | | | 2.981~4 | 2.980~6.3 | 2.980~8 | 2.980~10 | 2.980~12.5 | 3.2~16 | 2.980~6.3 | 2.980~8 | | | | | | 2 | | | 2.760~4 | 2.760~6.3 | 2.760~8 | 2.760~10 | 2.760~12.5 | 3.2~16 | 2.760~6.3 | 2.760~8 | | | | | | 2.4 (Motor) | | | 3.312~4 | 3.312~6.3 | | 3.312~10 | | | 3.312~6.3 | 3.312~8 | | | | | | 2.25 | | | | 3.105~6.3 | | | 3.105~12.5 | | | | | | | | 225 | 2.7 (Motor) | | | | 3.726~6.3 | | | 3.726~12.5 | | | | | | | | | 2.5 | | | 3.450~4 | 3.450~6.3 | 3.450~8 | 3.450~10 | 3.450~12.5 | 3.450~16 | 3.450~6.3 | 3.450~8 | | | | | 250 | 3.0 (Motor) | | | / | 4.140~6.3 | 4.140~8 | 4.140~10 | 4.140~12.5 | 4.140~16 | 4.140~6.3 | 4.140~8 | | | | | | 2.5 | | | 3.450~4 | 3.450~6.3 | 3.450~8 | 3.450~10 | 3.450~12.5 | 3.450~16 | 3.450~6.3 | 3.450~8 | | | | | 250 | 3.0 (Motor) | | | / | 4.140~6.3 | 4.140~8 | 4.140~10 | 4.140~12.5 | 4.140~16 | 4.140~6.3 | 4.140~8 | | | | | | 3.15 | | | / | 4.347~6.3 | 4.347~8 | 4.347~10 | 4.347~12.5 | 4.347~16 | 4.347~6.3 | 4.347~8 | | | | | 315 | 3.78 (Motor) | | | / | 5.216~6.3 | 5.216~8 | 5.216~10 | 5.216~12.5 | 5.216~16 | 5.216~6.3 | 5.216~8 | | | | NM8-630 | 350 | 3.5 | | | / | 4.830~6.3 | 4.830~8 | 4.830~10 | 4.830~12.5 | 4.830~16 | 4.830~6.3 | 4.830~8 | | | | NM8S-630 | 350 | 4.2 (Motor) | | | / | 5.796~6.3 | 5.796~8 | 5.796~10 | 5.796~12.5 | 5.796~16 | 5.796~6.3 | 5.796~8 | | | | | 400 | 4 | | | / | 5.520~6.3 | 5.520~8 | 5.520~10 | 5.520~12.5 | 5.520~16 | 5.520~6.3 | 5.520~8 | | | | | 400 | 4.8 (Motor) | | | / | / | 6.624~8 | 6.624~10 | 6.624~12.5 | 6.624~16 | / | 6.624~8 | | | | | 500 | 5 | | | / | / | 6.900~8 | 6.900~10 | 6.900~12.5 | 6.900~16 | / | 6.900~8 | | | | | 300 | 6.0 (Motor) | | | / | / | / | 8.280~10 | 8.280~12.5 | 8.280~16 | / | / | | | | | 630 | 6.3 | | | / | / | / | 8.694~10 | 8.694~12.5 | 8.694~16 | / | / | | | | | 050 | 7.56 (Motor) | | | / | / | / | / | 10.43~12.5 | 10.43~16 | / | / | | | | | 700 | 7 | | | / | / | / | 9.660~10 | 9.660~12.5 | 9.660~16 | / | / | | | | | 700 | 8.4 (Motor) | | | / | / | / | / | 11.59~12.5 | 11.59~16 | / | / | | | | NM8-1250 | 800 | 8 | | | / | / | / | / | 11.04~12.5 | 11.04~16 | / | / | | | | NM8S-1250 | - | 9.6 (Motor) | | | / | / | / | / | / | 13.24~16 | / | / | | | | | 1000 | 10 | | | / | / | / | / | / | 13.80~16 | / | / | | | | | | 12 (Motor) | | | / | / | / | / | / | / | / | / | | | | | 1250 | 12.5 | | | / | / | / | / | / | / | / | / | | | | | 1230 | 15.0 (Motor) | | | / | / | 1 | / | / | / | / | / | | | | NXA20 | | | | NXA32 | | | | NXA40 | | | NXA63 | | | |--------------|--------------------------|----------|--------------|----------|--------------|--------------|------------------|----------|------------------|--------------|--------------|----------------|-----------| | 1000 | 1250 | 1600 | 2000 | 1600 | 2000 | 2500 | 3200 | 3200 | 3600 | 4000 | 4000 | 5000 | 6300 | | 8 | 10 | 12.8 | 16 | 12.8 | 16 | 20 | 25.6 | 25.6 | 28.8 | 32 | 32 | 40 | 50 | | 2~10 | 2.5 ~ 12.5 | 3.2~16 | 4~20 | 3.2 ~ 16 | 4~20 | 5~25 | 6.4~32 | 6.4 ~ 32 | 7.2 ~ 36 | 8~40 | 8~40 | 10 ~ 50 | 12.6 ~ 50 | 1 | | | | 1 | | | | | | | | | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2~10
2~10 | 2.5 ~ 12.5
2.5 ~ 12.5 | 3.2~16 | 4~20
4~20 | 3.2~16 | 4~20
4~20 | 5~25
5~25 | 6.4~32
6.4~32 | 6.4~32 | 7.2~36
7.2~36 | 8~40
8~40 | 8~40
8~40 | 10~50
10~50 | 12.6~5 | | | | | | | 4~20 | 5~25 | | | | | 8~40 | | | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | | | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | | 10~50 | 12.6~5 | | 2~10
2~10 | 2.5 ~ 12.5
2.5 ~ 12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20
4~20 | 5~25
5~25 | 6.4~32
6.4~32 | 6.4~32 | 7.2~36
7.2~36 | 8~40
8~40 | 8~40
8~40 | 10~50 | 12.6~5 | | 2~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2.070~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2.208~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2.208~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2.484~10 | 2.5~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2.980~10 | 2.980~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 2.760~10 | 2.760~12.5 | 3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 3.312~10 | 3.312~12.5 | 3.312~16 | 4~20 | 3.312~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 3.105~10 | 3.105~12.5 |
3.2~16 | 4~20 | 3.2~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 3.726~10 | 3.726~12.5 | 3.726~16 | 4~20 | 3.726~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 3.450~10 | 3.450~12.5 | 3.450~16 | 4~20 | 3.450~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 4.140~10 | 4.140~12.5 | 4.140~16 | 4.140~20 | 4.140~16 | 4.140~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 3.450~10 | 3.450~12.5 | 3.450~16 | 4~20 | 3.450~16 | 4~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 4.140~10 | 4.140~12.5 | 4.140~16 | 4.140~20 | 4.140~16 | 4.140~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 4.347~10 | 4.347~12.5 | 4.347~16 | 4.347~20 | 4.347~16 | 4.347~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 5.216~10 | 5.216~12.5 | 5.216~16 | 5.216~20 | 5.216~16 | 5.216~20 | 5.216~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 4.830~10 | 4.830~12.5 | 4.830~16 | 4.830~20 | 4.830~16 | 4.830~20 | 5~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 5.796~10 | 5.796~12.5 | 5.796~16 | 5.796~20 | 5.796~16 | 5.796~20 | 5.796~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 5.520~10 | 5.520~12.5 | 5.520~16 | 5.520~20 | 5.520~16 | 5.520~20 | 5.520~25 | 6.4~32 | 6.4~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 6.624~10 | 6.624~12.5 | 6.624~16 | 6.624~20 | 6.624~16 | 6.624~20 | 6.624~25 | 6.624~32 | 6.624~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 6.900~10 | 6.900~12.5 | 6.900~16 | 6.900~20 | 6.900~16 | 6.900~20 | 6.900~25 | 6.900~32 | 6.900~32 | 7.2~36 | 8~40 | 8~40 | 10~50 | 12.6~5 | | 8.280~10 | 8.280~12.5 | 8.280~16 | 8.280~20 | 8.28~16 | 8.280~20 | 8.280~25 | 8.280~32 | 8.280~32 | 8.280~36 | 8.280~40 | 8.280~40 | 10~50 | 12.6~5 | | 8.694~10 | 8.694~12.5 | 8.694~16 | 8.694~20 | 8.694~16 | 8.694~20 | 8.694~25 | 8.694~32 | 8.694~32 | 8.694~36 | 8.694~40 | 8.694~40 | 10~50 | 12.6~5 | | / | 10.43~12.5 | 10.43~16 | 10.43~20 | 10.43~16 | 10.43~20 | 10.43~25 | 10.43~32 | 10.43~32 | 10.43~36 | 10.43~40 | 10.43~40 | 10.43~50 | 12.6~5 | | 9.660~10 | 9.660~12.5 | 9.660~16 | 9.660~20 | 9.660~16 | 9.660~20 | 9.660~25 | 9.660~32 | 9.660~32 | 9.660~36 | 9.660~40 | 9.660~40 | 10~50 | 12.6~5 | | / | 11.59~12.5 | 11.59~16 | 11.59~20 | 11.59~16 | 11.59~20 | 11.59~25 | 11.59~32 | 11.59~32 | 11.59~36 | 11.59~40 | 11.59~40 | 11.59~50 | 12.6~5 | | / | 11.04~12.5 | 11.04~16 | 11.04~20 | 11.04~16 | 11.04~20 | 11.04~25 | 11.04~32 | 11.04~32 | 11.04~36 | 11.04~40 | 11.04~40 | 11.04~50 | 12.6~5 | | / | / | 13.24~16 | 13.24~20 | 13.24~16 | 13.24~20 | 13.24~25 | 13.24~32 | 13.24~32 | 13.24~36 | 13.24~40 | 13.24~40 | 13.24~50 | 13.24~ | | / | / | 13.80~16 | 13.80~20 | 13.80~16 | 13.80~20 | 13.80~25 | 13.80~32 | 13.80~32 | 13.80~36 | 13.80~40 | 13.80~40 | 13.80~50 | 13.8~5 | | / | / | / | 16.56~20 | / | 16.56~20 | 16.56~25 | 16.56~32 | 16.56~32 | 16.56~36 | 16.56~40 | 16.56~40 | 16.56~50 | 16.56~ | | / | / | / | 17.25~20 | / | 17.25~20 | 17.25~25 | 17.25~32 | 17.25~32 | 17.25~36 | 17.25~40 | 17.25~40 | 17.25~50 | 17.25~ | | / | / | / | / | / | / | 20.70~25 | 20.70~32 | 20.70~32 | 20.70~36 | 20.70~40 | 20.70~40 | 20.70~50 | 20.70~ | ### **Installation and wiring** ### **Dimensions and installation** # **Horizontal connection** Side view Busbar size and busbar interval Datum Y N pole Datum Y Datum Y ×Ф13 0 (Optional) (Optional) ### Number of busbar | | Number of pieces | | | | | | | | | | |------------------------|------------------|--------|---------------|---------------|--|--|--|--|--|--| | "Rated current (A) " | Three poles | | Four poles | | | | | | | | | | A pole+C pole | B pole | A pole+B pole | C pole+N pole | | | | | | | | 400 ~ 630 | 4 | 2 | 4 | 4 | | | | | | | | 800 ~ 1250 | 4 | 2 | 4 | 4 | | | | | | | | 1600 | 8 | 4 | 8 | 8 | | | | | | | ### **Installation and wiring** # **Horizontal connection** Side view Busbar size and interval N pole Datum Y Datum Y <u>8×Ф13</u> 6×Φ13 0 0 0 $\oplus | \oplus$ Optional Optional ### Number of busbar | | Number of pieces | | | | | | | | |------------------------|------------------|--------|---------------|---------------|--|--|--|--| | "Rated current (A) " | Three poles | | Four poles | | | | | | | | A pole+C pole | B pole | A pole+B pole | C pole+N pole | | | | | | 400 ~ 630 | 4 | 2 | 4 | 4 | | | | | | 800 ~ 1250 | 4 | 2 | 4 | 4 | | | | | | 1600 | 8 | 4 | 8 | 8 | | | | | # **Horizontal connection** Side view Busbar size and interval Φ;Φ horizontal connection Lengthen busbar 32×Ф13 60 95 95 L type vertical connection ### **Horizontal connection** Side view ### External transformer (Neutral CT) (3P+N mode) External transformer (Neutral CT) dimension The installation overall dimension of an external N-phase transformer is as below when the controller is of 3P+N type. The transformer is provided by the manufacturer. A connection copper bar and an installation support are manufactured by users. 1-Wiring panel 2-Busbar 3-Fixation panel 4-Transformer | Frame size | а | b | с | d | |------------|-----|----|----|-----| | 1600 | 45 | 20 | 40 | 88 | | 2000 | 60 | 20 | 34 | 89 | | 3200 | 80 | 20 | 35 | 110 | | 4000 | 120 | 20 | 16 | 58 | | 6300 | 80 | 20 | 35 | 110 | ### **4CT Type earth current transformer** Structural dimension of external earth current transformer (W type) ### Secondary circuit wiring For user Four groups of adapters (Default) Six groups of adapters Q-Undervoltage release F-Shunt release X-Closing coil M-Charging motor SA-Limited XT-Wiring terminal AX-Auxiliary contact SB1-Emergency stop button SB2-Tripping push button SB3-Closing push button HL1-Failure indication lamp HL2-Charging indication lamp HL3-Tripping indication lamp HL4-Closing indication lamp FU-Fuse (6A) 1#, 2#: Power supply of intelligent controller 3#~5#: Tripping alarm contact (4-common point) 6#, 9#: Auxiliary contact, normally open contact 10#~11#: Empty 12#~19#: Empty 20#: PE line 21#~24#: Empty 25#~26#: External N-phase transformer input signal contacts. Conventional products are empty. When an external transformer is required to be attached for special order of users, they are external transformer signal input contacts. 27#, 28#: Undervoltage release (Connected to the main circuit) 29#, 30#: Shunt release 31#, 32#: Closing coil 33#, 34#: Charging indication 34#, 35#: Charging motor 36#~56#: Auxiliary contact Conventional products are four groups of adapters, and six groups of adapters can be provided(only for AC) for special order for users. Note: The full line section is connected, and the dot line is connected ### AX auxiliary contact type For user Four groups of adapters (Default) Six groups of adapters Q-Undervoltage release F-Shunt release X-Closing coil M-Charging motor SA-Limited switch XT-Wiring terminal AX-Auxiliary contact SB1-Emergency stop button SB2-Tripping push button SB3-Closing push button HL1-Failure indication lamp HL2-Charging indication lamp HL3-Tripping indication lamp HL4-Closing indication lamp FU-Fuse (6A) PSU-1—power module 1#, 2#: Power supply of intelligent controller 3#~5#: Tripping alarm contact (4-common point) 6#~9#: Auxiliary contact, normally open contact 10#~11#: Defaulted communication output contact for a H type intelligent controller. P type is empty 12#~19#: Four groups of programmable output contacts 12# : com, 18#:D01, 16#:D02, 14#D03, 13#D04 H type intelligent controller with a programmable output contact outputs in default: 12#, 13#; load 1 alarm, 12#, 14#; load 2 alarm, 12#,16#: tripping signal output, 12#, 18#: Closing signal output P type intelligent controller with a programmable output contact outputs in default: 12#, 13#: load 1 alarm, 12#, 14#: load C alarm, 12#, 16#: self-diagnosis alarm, 12#, 18#: failure tripping. 20#: PE line. 21#~24#: voltage display input signal contact P/H type intelligent controller 21#:N-phase voltage signal 22#: A-phase voltage signal 23#:B-phase voltage signal, 24#: C- phase voltage signal 25#~26#: External N-phase transformer or external earth current transformer input signal contacts. Conventional products are empty. When an external transformer is required for special order for users, they are external transformer signal input contacts. 27#, 28#: Undervoltage release (Connected to the main circuit) 29#, 30#: Shunt release 31#, 32#: Closing coil 33#, 34#: Charging indication 34#, 35#: Charging motor 36#~56#: Auxiliary contact Conventional products are four groups of adapters, and six groups of adapters can be provided for special order for users (only for AC). ST-DP: DP protocol module. When the upper computer communication protocol is Modbus-RTU, the ST-DP protocol module is not required. When the upper computer communication protocol is Profibus-DP, the Modbus-RTU protocol module is required to be converted into Profibus-DP protocol by the ST-DP protocol module, extra fee needed. RU-1 :relay module. The circuit breaker is used for tripping and switching via remote control, and is used for tripping and switching signal energy amplification, extra fee needed. Note: The full line section is connected, and the dot line should be connected by customers. ### AX auxiliary contact type For user Four groups of adapters (DefaultFive groups of adapters Four-open four-closed auxiliary contact Five-open five-closed auxiliary contact 21#~24#: voltage display input signal contact P/H type intelligent controller 21#: N-phase voltage signal, 22#: A-phase voltage signal 23#: B-phase voltage signal, 24#: C- phase voltage signal 25#~26#: External N-phase transformer or external earthing current transformer input signal contacts. Conventional products are empty. When an external transformer is required for special order for users, they are external transformer signal input contacts. 27#, 28#: Undervoltage release (Connected to the main circuit or connected to the output of the undervoltage delay module) 29#, 30#: Shunt release, 31#, 32#:
Closing coil, 33#, 34#: Charging indication 34#, 35#: Charging motor, 36#~56#: Auxiliary contact Three-open three-closed auxiliary contact M-Charging motor SA-Limited switch XT-Wiring terminal AX-Auxiliary contact SB1-Emergency stop button SB2-Tripping push button SB3-Closing push button HL1-Failure indication lamp HL2-Charging indication lamp HL3-Tripping indication lamp HL4-Closing indication lamp FU-Fuse (6A) PSU-1—power module 1#, 2#: Power supply of intelligent controller 3#~5#: Tripping alarm contact (4-common point) 6#~9#: Auxiliary contact, normally open contact 10#~11#: Defaulted communication output contact for a H type intelligent controller. P type is empty 12#~19#: Four groups of programmable output contacts 12# : com, 18 #:D01,16 #:D02,14 #D03,13 #D04 H type intelligent controller with a programmable output contact outputs in default: 12#, 13#: load 1 alarm, 12#, 14#: load 2 alarm, 12#,16#: tripping signal output, 12#, 18#: switching signal output. P type intelligent controller with a programmable output contact outputs in default: 12#, 13#: load 1 alarm, 12#, 14#: load C alarm, 12#,16#: self-diagnosis alarm, 12#, 18#: failure tripping. 20#: PE line. Conventional products are four groups of adapters. The three-open three-closed auxiliary contact, the four-open four-closed auxiliary contact, the five-open five-closed auxiliary contact, and five groups of adapters can be provided for the special order for users. ST-DP: DP protocol module. When the upper computer communication protocol is Modbus-RTU, the ST-DP protocol module is not required. When the upper computer communication protocol is Profibus-DP, the Modbus-RTU protocol module is required to be converted into Profibus-DP protocol by the ST-DP protocol module, extra fee needed. RU-1: relay module. The circuit breaker is used for breaking and making via remote control, and is used for breaking and making signal energy amplification, extra fee needed. Note: 1. the full line section is connected, and the dot line should be connected by Note: 2. when the voltages of the controller of the 2000-4000 frame are AC 230V/AC 400V, the controller can be directly connected to 1#, 2#terminals. When the voltage is DC 220V/DC 110V, the controller can be connected to 1#, 2# terminals after the power supply module outputs DC 24V. ### **Chassis position indicator device** Wiring diagram #### Operation requirements: - The chassis indication device can indicate the positions including "disconnected", "test" and "connected"which are completely or partially used according to the requirements of order. - 2. When the body of the draw-out type circuit breaker is pushed from the "disconnected" position to the "test" position, 55# and 56# terminals should be transferred from connection into disconnection, and 56# and 57# terminals should be transferred from disconnection to connection. - 3. When the body of the draw-out type circuit breaker is pushed from the "disconnected" position to the "test" position, 58# and 59# terminals should be transferred from connection into disconnection, and 59# and 60# terminals should be transferred from disconnection to connection. There is sufficient safety distance between the bus of the circuit breaker body and a bridge-type contact of the safety shutter, and tripping and switching operation can be carried out reliably. - 4. When the body of the draw-out type circuit breaker is switched from the "test" position to the "connected" position, NXA16 type secondary circuit has no clearance. The NXA20-63 type safety shutter swing continuously after sending out the "cracking" sound, and the safety shutter jiggle handle rotates within 1.5 circles. 61# and 62# terminals are being transferred from connection to disconnection. 62# and 63# terminals are transferred from disconnection to connection. The busbar of circuit breaker body is required to be reliably inserted into the bridge-type contact of the chassis base, and reliably bear the main circuit current to operate. - 5. When the body of the draw-out type circuit breaker is pushed from the "connected" position to the "test" position, 58# and 59# terminals should be transferred from connection into disconnection, and 59# and 60# terminals should be transferred from disconnection to connection. There is sufficient safety distance between the busbar of the circuit breaker body and a bridge-type contact of the chassis, and tripping and switching operation can be carried out reliably. - 6. When the body of the draw-out type circuit breaker swings from the "test" position to the "disconnected" position, 55# and 56# terminals should be transferred from connection to disconnection, and 56# and 57# terminals should be transferred from disconnection to connection, and at the same time, the circuit breaker body still cannot be drawn out, and needs to swing toward the "disconnected" position until the handle cannot swing any more, and meanwhile, the circuit breaker body can be drawn out. After the circuit breaker is pulled out, 55# and 56# terminals should be transferred from disconnection to connection, and 56# and 57# terminals should be transferred from connection to disconnection. - 7. In the position transfer operation process of the chassis, the operation can only be stopped when the indicator points to "disconnected", "test" and "connected" or the position indicator cannot display the position of the circuit breaker body in the chassis correctly. Note: These number is used for position indicator only. # **Annex I: Configuration** | Standard configuration | 1600A frame | 1600A frame | | ne | 3200A frame | | 4000A frame | | 6300A frame | | |-------------------------------------|-------------|---------------|------------|---------------|-------------|---------------|-------------|---------------|-------------|---------------| | Standard Configuration | Fixed type | draw-out type | | Circuit breaker body | • | • | • | • | • | • | • | | • | • | | Chassis | | - | | • | | • | | | | • | | Intelligent controller | • | • | - | | - | | - | | - | | | Vertical and horizontal connection | • | • | • | • | • | • | • | | • | • | | ON/OFF indication contact 4CO | • | - | • | • | • | • | • | • | • | • | | Failure tripping indication contact | • | - | • | • | • | • | • | | • | • | | Motor operating mechanism | • | - | • | | • | | • | • | • | • | | Closing coil | • | - | • | • | • | • | • | | • | • | | Shunt release | • | • | • | • | • | • | • | | • | • | | Door frame | • | • | • | | - | • | - | | - | | | Optional accessories | 1600A fram | e | 2000A fram | ne | 3200A fram | ne | 4000A fram | ne | 6300A fram | ie | |--|------------|---------------|------------|---------------|------------|---------------|------------|---------------|------------|---------------| | Optional accessories | Fixed type | draw-out type | | Standard undervoltage release | • | - | • | • | • | • | • | - | - | • | | Adjustable time-delay undervoltage unit | | - | | | | | | | • | | | Pushbutton lock | | - | - | • | • | • | • | - | - | | | "Disconnected" position padlock | | - | | | | | | - | | | | Safety shutters padlock | | - | | • | | • | | - | | • | | Body lock | | - | | | • | | | | • | | | Position door interlock | | • | | • | | • | | • | | | | State door interlock | | - | | | | | | - | | | | ON/OFF indication contact 6CO | | - | | | | | | | | | | ON/OFF indication contact 5NO + 5NC | | | | | • | • | | | • | | | ON/OFF indication contact 3NO + 3NC | | | | - | • | - | • | - | - | | | ON/OFF indication contact 4NO+4NC | | | | | • | | • | | • | | | ON/OFF indication contact 5CO | | | | | • | | • | - | - | | | "Connected", "Disconnected" and "test" position indication contact | | • | | • | | • | | • | | • | | Mechanical interlock | | - | | | • | | • | - | - | | | Source-changeover controller | | - | | | • | | • | | • | | | External transformer (Neutral CT) | • | • | | • | • | • | - | • | - | • | | Earth current transformer and accessories thereof | • | • | • | • | • | • | • | • | • | • | | Interphase barrier | • | - | - | • | • | • | • | • | - | • | ### Annex II: Selection table | Frame size | 1600A | | | 2000A | | | 3200A | | | 4000A | | | 6300A | |--------------------------------------|---|-------------------|------------------|---------------|------------|---------------|-----------------|------------------|----------------|-----------------|---------|----|---------| | Circuit breaker | N 🗆 | S 🗆 | н□ | N□ | S 🗆 | н□ | N□ | S 🗆 | н□ | N 🗆 | S 🗆 | н□ | н□ | | | 400A □ 630A □ | | | , | | 1600A □ | | 3200A 🗆 | 3200A □ | | 4000A □ | | | | | 630A 🗆 | | | 800A 🗆 | | | 2000A 🗆 | 2000A □ | | | 3600A □ | | | | Rated current | 800A 🗆 | | | 1000A 🗆 | | | 2500A 🗆 | | | 4000A □ | | | 6300A □ | | Kated current | 1000A □ | | | 1250A 🗆 | | | 3200A 🗆 | | | | | | | | | 1250A □ | | | 1600A 🗆 | | | | | | | | | | | | 1600A 🗆 | | | 2000A 🗆 | | | | | | | | | | | Number of poles | 3 pole □ | | | | 4 pole □ | (While In=630 | 00A , no four p | oles) | | | | | | | Installation modes | Horizontal d | lraw-out □ | | | | | | Fixed and | horizontal [|] | | | | | Intelligent controller | M type □ | | A type \square | | P type □ | P. | Г type □ | H type □ | | HT type □ | | | | | Shunt release and | Closing coil | | | | | | | | | Shunt release [|] | | | | motor operation | AC220/230/240V □ AC380/400/415V □ [| | | | DC110V [| | DC220V □ | | | | | | | | Undervoltage release | UVT 🗆 🛚 A | ASUVT 🗆 | | | UVTD 🗆 | ASUVTD □ | | | | | | | | | (Match) | AC220/230/3
1s□ 2s□ | 240V □
3s□ 4s□ | 5s□ | | AC380/400 |)/415V 🗆 | | | | | | | | | Auxiliary contact | NXA16: C04
NXA20~63: | | | | □ C05□ | | | | | | | | | | Connection accessories | Interphase b | arrise 🗆 | | | | | | | | | | | | | | External tran | nsformer: E | arth curre | ent transform | ner 🗆 | | | External t | ransformer (N | Neutral CT)
| | | | | Controller accessories
(Match) | Note: 1) Neut | | | | | d when custor | mers select ear | th current retur | n type earthii | ng protection. | | | | | Lock mechanism | Pushbutton lock ☐ Safety shutters padlock ☐ | | | Вс | ody lock 🗆 | | One-lock | one-key 🗆 | Two- | locks one-key | | | | | (Match) | Three-locks two-keys "Disconnected" position padlock Door interlock (Body) Door interlock (chassis) | | | | | | | | | | | | | | Mechanical interlock
(Match) | 1 "Normal" and 1 "Replacement" 2 "Incoming" and 1 "Busbar" | | | | | | | | | | | | | | Source-changeover controller (Match) | 1 "Normal" a | and 1 "Rep | lacement | · 🗆 | 2 "Incomin | g" and 1 "Bus | bar" 🗆 | | | | | | | ### Annex III: Earth fault protection #### **Earth protection** There are two protected modes for metal single-phase earth fault, namely vector sum(T) and earth current(W).Type-T detects zero sequence current and four-phase current vector(three-phase four-wire system) or three-phase current vector(three-phase three-wire system) will be added to provide reference for earth protection. Type-W detects earthing cable current directly by special external transformer. Type-W can protect both stages of breaker at the same time. Distance between the transformer and breaker should be no more than 5m. Zone interlocking can be used in the condition of vector sum earth fault. a.correlation setting parameters of earth protection | Parameter Names | Setting range | Setting step size | Remarks | |--|---|-------------------|---| | Set value of action current Ig | OFF+(0.2~1.0)×In (Frame NXA16/NXA20, Max= 1200A) OFF+(500A~1200A) (Frame NXA32/NXA40/NXA63) | 1A | | | delay time Tg | (0.1~0.4)S | 0.1s | | | Zone interlocking of earth fault
(for T-type earth fault) (ZSI) | 1.At least one way of DO should be set as "Zone Interlocking" or "earth Interlocking" 2.At least one way of DI should be set as "Zone Interlocking" or "earth Interlocking" | | Signal unit options must be S2 or S3 When DI/DO is set as zone interlocking , it effects "Earth Zone Interlocking" and "Short Zone Interlocking" When DI/DO is set as earth interlocking, it only effects "earth Zone Interlocking" . If the function isn' t set, it has no effect. | #### b. Operating characteristic of earth protection | Characteristic | I/Ig | Tripping time | Permissible error | |------------------------------|-------|---------------|--| | Non-operating characteristic | < 0.9 | Non-operate | | | Operation characteristic | > 1.1 | Operate | | | Time-delay operation | ≥1.1 | Note | ±15% or inherent absolute error±40ms(choose the max value) | Note: The delay time of earth fault is divided into two stages, inverse time and definite time. When fault current is less than 1.0In or 1200A, the protection is inverse, the time delay is calculated as follow: $t=(1.0In or1200A/I)^2 \times Tg$ In this equation: t---action time Tg --- setting delay time I---fault earth current ### Annex III: Earth fault protection When fault current is more than 1.0In or 1200A, the protection is definite; the time delay is the setting delay time. c. Schematic Diagram of detection Type-T Type-W #### Leakage protection (E) Leakage protection applies to leakage fault caused by insulation failure of equipment or human touching exposed electric conduction position. Leakage tripping current $I\Delta n$ is independent of breaker rated current. An extra rectangular transformer is needed for zero sequence sampling method. This method is appropriate for small current protection because of its high accuracy and sensitivity. a. correlation setting parameters of leakage protection | Parameter Names | Setting range | Setting step size | |---------------------------------|---|-------------------| | Set value of action current I∆n | (0.5~30.0)A | 0.1A | | Delay time TΔn(S) | Instantaneous , 0.06 , 0.08 , 0.17 , 0.25 , 0.33 , 0.42 , 0.5 , 0.58 , 0.67 , 0.75 , 0.83 | | | Operation mode | Trip/Turn off | | #### b. Operating characteristic of leakage protection | Characteristic | I/IΔn | Tripping time | Permissible error | |------------------------------|-------|-------------------|-------------------------------------| | Non-operating characteristic | < 0.8 | Non-operate | | | Operation characteristic | > 1.0 | Operate | | | Time-delay operation | ≥1.0 | Shown in Table 18 | ±10% (inherent absolute error±40ms) | | Setting time(s) | 0.06 | 0.08 | 0.17 | 0.25 | 0.33 | 0.42 | 0.5 | 0.58 | 0.67 | 0.75 | 0.83 | Instantaneous | |---------------------------|---------|--------------------------|------|------|------|------|-----|------|------|------|------|---------------| | Multiple of Fault Current | Maximum | Maximum Breaking Time(s) | | | | | | | | | | | | 1 I∆n | 0.36 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 0.04 | | 2 I∆n | 0.18 | 0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 | 1.75 | 2 | 2.25 | 2.5 | 0.04 | | 5 IΔn | 0.072 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | , | 0.04 | | 10 I∆n | 0.072 | 0.1 | 0.2 | 0.5 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | 0.04 | ### Annex III: Earth fault protection #### c. Schematic Diagram of leakage protection #### **Dual earth fault protection** NXA P/H type controller has a unique feature: the installation of two independent earth fault protection curves is permissible, so that two kinds of configurations can be managed at the same time. The release can differentiate unlimited regional earth faults because of the feature to command the NXA circuit breaker to trip and the limited regional earth fault to command the medium-voltage circuit breaker to strip. ### **Annex IV: Source-changeover controller** ### **Functions of the controller** #### 2A type display and operation CD-1: A 2A type source-changeover system is used for the switch between power grids or between the power grid and generator. When a normal power supply does not supply power normally, such as undervoltage, overvolgage, phase breaking, a spare power supply is switched for supplying power. A mechanical interlock component is configured according to standard. #### 2A type of functions The controller has the following functions - 1. Dual-circuit voltage detection display - 2. Overvoltage threshold value adjustment: 400V-480V - 3. Undervoltage threshold value adjustment: 280V-360V - 4. Adjustment of T1, T2, T3 and T4: 0.5-64S with the step size of 0.5S $\,$ - $5.\ Undervoltage\ and\ overvoltage\ fault\ indication$ - 6. Power supply fault indication - 7. State indication of the circuit breaker - 8. Self-input and self-reset or self-input and self-reset selection - 9. Manual or automatic selection - 10. Comprehensive alarm for transfer failure (fault of the circuit breaker, sending fault of control signals and unmet transfer conditions) - 11. All primary adjustment states after resetting and before defaulting - 12. Alarm contact - 13. Unloading contact - 14. Startup contact of a power generator - 15. Standard configuration - 16. Mechanical interlock - 17. The controller has an overvoltage protection function, and operates normally with long-term overvoltage: 130% Ue. #### Truth table | S1-circuit power supply | S2-circuit power supply | |-------------------------|-------------------------| | 1 | 0 | | 0 | 0 | | 0 | 1 | ### **Annex IV: Source-changeover controller** #### 3A type display and operation CD-1 A 3A source-changeover system is applicable to a power supplying system with two power supplies and one buscouple. In the manual operation process, load cannot lead to power interruption, so that the safety running level and the power supplying continuity for power distribution are enhanced. The 3A automatic power supply conversion system is applied to electric places. ### 3A type functions The controller has the following functions - 1. Dual-circuit voltage detection display - 2. Overvoltage threshold value adjustment: 400V-480V - 3. Undervoltage threshold value adjustment: 280V-360V - 4. Adjustment of T1, T2, T3 and T4: 0.5-64S with the step size of 0.5S - 5. Undervoltage and overvoltage fault indication - 6. Power supply fault indication - 7. State indication of the circuit breaker - 8. Self-input and self-reset or self-input and self-reset selection ${\bf S}$ - 9. Manual or automatic selection - Comprehensive alarm for transfer failure (fault of the circuit breaker, sending fault of control signals and unmet transfer conditions) - 11. All primary adjustment states after resetting and before defaulting - 12. Alarm contact - 13. Unloading function - 14. Standard configuration - 15. Mechanical interlock - 16. The controller has an overvoltage protection function, and operates normally with long-term overvoltage: 130% Ue. #### Truth table | S1-circuit power supply' | TIE buscouple | S2-circuit power supply | |--------------------------|---------------|-------------------------| | 1 | 0 | 1 | | 1 | 1 | 0 | | 0 | 1 | 1 | | 1 | 0 | 0 | | 0 | 0 | 1 | | 0 | 0 | 0 | ### Note | Note | | |------|--|
 | | ### Note | Note | |------| |